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ABSTRACT

Chemical tagging seeks to identify unique star formation sites from present-day stellar abundances.

Previous techniques have treated each abundance dimension as being statistically independent, despite

theoretical expectations that many elements can be produced by more than one nucleosynthetic pro-

cess. In this work we introduce a data-driven model of nucleosynthesis where a set of latent factors

(e.g., nucleosynthetic yields) contribute to all stars with different scores, and clustering (e.g., chemical

tagging) is modelled by a mixture of multivariate gaussians in a lower-dimensional latent space. We

use an exact method to simultaneously estimate the factor scores for each star, the partial assignment

of each star to each cluster, and the latent factors common to all stars, even in the presence of missing

data entries. We use an information-theoretic Bayesian principle to estimate the number of latent

factors and clusters. Using the second Galah data release we find that five latent factors are preferred

to explain N = 1,072 stars with 18 chemical abundances. We identify the rapid- and slow-neutron

capture processes, as well as latent factors consistent with Fe-peak and α-element production, and an-

other where only K and Zn dominate. When we consider N ∼ 100,000 stars with missing abundances

we find another seven factors, as well as 16 components in latent space. Despite these components

showing separation in chemistry that is explained through different yield contributions, none show sig-

nificant structure in their positions or motions. We argue that more data, and joint priors on cluster

membership that are constrained by dynamical models, are necessary to realise chemical tagging at a

galactic-scale. We release accompanying software that scales well with the available data, allowing for

model parameters to be optimised in seconds given a fixed number of latent factors, components, and

∼ 107 abundance measurements.
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1. INTRODUCTION

The detailed chemical abundances that are observ-

able in a star’s photosphere provide a fossil record

that carries with it information about where and when

that star formed (Freeman & Bland-Hawthorn 2002).

While the photospheric abundances remain largely un-

changed throughout a star’s lifetime (however see Dotter

et al. 2017; Ness et al. 2018a), the dynamical dissipation

timescale of open clusters in the Milky Way disc is of or-

der a few gigayears (Portegies Zwart et al. 1998). That
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makes chemical tagging an attractive approach to iden-

tify star formation sites long after those stars are no

longer gravitationally bound to each other.

Gravitationally bound star clusters have been useful

laboratories for testing the limits and utility of chemi-

cal tagging. Although biases arise when only consider-

ing star clusters that are still gravitationally bound, the

chemical homogeneity of open clusters provides an em-

pirical measure of how similar stars would need to be be-

fore they could be tagged as belonging to the same star

formation site (Mitschang et al. 2014). However, there

are analysis issues in understanding how precisely those

chemical abundances can be measured (Bovy 2016), and

how chemically similar stars can be that did not form
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together (dopplegängers; Ness et al. 2018b). If open

clusters were truely chemically homogeneous then un-

der idealistic assumptions our ability to chemically tag

the Milky Way would depend primarily on the precision

with which we can measure those chemical abundances

in stars. Data-driven approaches to modelling stellar

spectra are improving upon this precision (Ness et al.

2015; Ness 2018; Ness et al. 2018a; Casey et al. 2016a,

2017; Ho et al. 2017a,b; Leung & Bovy 2018), but more

work is needed: astronomers have not yet developed un-

biased estimators of chemical abundances that saturate

the Cramér-Rao bound (Cramér 1946; Rao 1945).

Chemical tagging experiments require a catalogue of

precise chemical abundance measurements for a large

number of stars, where those chemical abundances trace

different nucleosynthetic pathways. This is the primary

goal of the Galah survey (De Silva et al. 2015; Martell

et al. 2017; Buder et al. 2018), a stellar spectroscopic

survey that uses the High Efficiency and Resolution

Multi-Element Spectrograph (HERMES; Sheinis et al.

2015) on the Australian Astronomical Telescope (AAT).

Galah will observe up to 106 stars in the Milky Way,

and measure up to 30 chemical abundances for each

star. This includes light odd-Z elements (e.g., Na, K),

elements produced through alpha-particle capture (e.g.,

Mg, Ca, Ti), and elements produced through the slow

(e.g., Ba) and rapid neutron-capture process (e.g., Eu).

No other spectroscopic survey provides an equivalent

set of chemical abundances for a comparable number

of stars.

Given these data and the most favourable assump-

tions in chemical tagging – that star clusters are tru-

ely chemically homogenous, that we can measure those

abundances with infinite precision, and that those abun-

dances are differentiable between star clusters – then

chemical tagging becomes a clustering problem. All

clustering techniques applied to chemical tagging thus

far have assumed that the data dimensions are indepen-

dent. That is to say that adding a dimension of say

[Ni/H] provides independent information that could not

have been predicted from other elemental abundances.

Theory and observations agree that this cannot be true.

Nucleosynthetic processes produce multiple elements in

varying quantities, and the effective dimensionality of

stellar abundance datasets has been shown to be lower

than the actual number of abundance dimensions (Ting

et al. 2012; Price-Jones & Bovy 2018). Any clustering

approach that treats each new elemental abundance as

an independent axis of information will therefore con-

clude with biased inferences about the star formation

history of our Galaxy.

It is not trivial to confidently estimate the nucleosyn-

thetic yields that have contributed to the chemical abun-

dances of each star. There are qualitative statements

that can be made for large numbers of stars, or partic-

ular types of stars, but quantifying the precise contri-

bution of different processes to each star is an unsolved

problem. For example, the so-called [α/Fe] ‘knee’ in

abundance ratios in the Milky Way can qualitatively be

explained by core-collapse supernovae being the predom-

inant nucleosynthetic process in the early Milky Way be-

fore Type Ia supernovae made a significant contribution,

but efforts to date have not sought to try to explain the

detailed abundances of stars as a contribution of yields

from different systems (however see West & Heger 2013).

This is in part because of the challenging and degenerate

nature of the problem as described, and is complicated

by the differences in yield predictions that account from

prescriptions used in different theoretical models.

New approaches to chemical tagging are clearly

needed. Immediate advances would include methods

that take the dependence among chemical elements into

account within some generative model, or techniques

that combine chemical abundances with dynamical con-

straints to place joint prior probabilities on whether any

two stars could have formed from the same star cluster,

given some model of the Milky Way.

In this work we focus on the former. Here we present

a new approach to chemical tagging that allows us to

identify the latent (unobserved) factors that contribute

to the chemical abundances of all stars (e.g., nucleosyn-

thetic yields) while simultaneously performing clustering

in the latent space. Notwithstanding caveats that we

will discuss in detail, this allows us to infer nucleosyn-

thetic yields rather than strictly prescribe them from

models. Moreover, the scale of the clustering problem

reduces by a significant fraction because the clustering

is performed in a lower dimensional latent space instead

of the higher dimensional data space. In Section 2 we

describe the model and the methods we use to estimate

the model parameters. Section 3 describe the exper-

iments performed using generated and real data sets.

We discuss the results of these experiments in Section 4,

including the caveats with the model as described. We

conclude in Section 5.

2. METHODS

Factor analysis is a common statistical approach for

describing correlated observations with a lower number

of latent variables (e.g., Thompson 2004). Related tech-

niques include principal component analysis (Hotelling

1933) and its variants (Tipping & Bishop 1999), singu-

lar value decomposition (Golub & Reinsch 1970), and
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other matrix factorization methods. While factor anal-

ysis on its own is a useful dimensionality reduction tool

to identify latent factors that contribute to the chemical

abundances of stars (e.g., Ting et al. 2012; Price-Jones

& Bovy 2018), factor analysis cannot describe cluster-

ing in the data (or latent) space. Similarly, clustering

techniques applied to chemical abundances to date (e.g.,

Hogg et al. 2016) do not account for the lower effective

dimensionality in elemental abundances.

Here we expand on a variant of factor analysis known

elsewhere as a mixture of common factor analyzers

(Baek et al. 2010), where the data are generated by a set

of latent factors that are common to all data, but the

scoring (or extent) of those factors is different for each

data point, and the data can be modelled as a mixture

of multivariate normal distributions in the latent space

(factor scores). In this work the data X is a N × D

matrix where N is the number of stars and D is the

number of chemical abundances measured for each star.

We assume a generative model for the data

X = µ + LS + e (1)

where L is a J×D matrix of factor loads that is common

to all data points, J is the number of latent factors, and

the factor scores for the nth data point

Sn ∼ N (ξk,Ωk) (2)

are drawn from1 the kth multivariate normal distribu-

tion. The mean vector µ describes the mean datum in

each dimension. The factor scores for all data points S

is then a N×J matrix, where each data point has a par-

tial association to the components in latent space. We

assume e ∼ N (0,diag(D)) is independent of the latent

space, and D is a vector of variances in each D abun-
dance dimensions. In this model each data point can

be represented as being drawn from a mixture of multi-

variate normal components, except the components are

clustered in the latent space S and projected into the

data space by the factor loads L.

We assume that the latent space is lower dimension-

ality than the data space (e.g., J < D). Within the

context of stellar abundances, the factor loads L can

be thought of as the mean yields of nucleosynthetic

events (e.g., s-process production from AGB stars av-

eraged over initial mass function and star formation his-

tory), and the factor scores are analogous to the relative

counts of those nucleosynthetic events. The clustering

1 For clarifying nomenclature across disciplines, the terminology
z ∼ N (0, 1) indicates that the z variable is drawn from a standard
normal distribution.

in factor scores achieves the same as a clustering proce-

dure in data space, except we simultaneously estimate

the latent processes that are common to all stars (the so-

called factor loads, analogous to nucleosynthetic yields).

Within this framework a rare nucleosynthetic event can

still be described as a ‘factor load’ Lj , but its rarity

would be represented by associated factor scores being

zero for most stars and thus have no contribution to the

observed abundances. In practice the factor loads can

only be identified up to orthogonality and cannot be

expressly interpreted as nucleosynthetic yields because

they have limited physical meaning (we discuss this fur-

ther in Section 4), but this description of typical yields

and relative event rates should help build intuition for

the model parameters, and provide context within the

astrophysical problem it is being applied.

Including latent factors in the model description al-

lows us to account for processes that affect multiple el-

emental abundances. In this way we are accounting for

the fact that the data dimensions are not independent of

each other. Another benefit is the scaling with computa-

tional cost. If we considered data sets of order 107.5 en-

tries (e.g., 30 chemical abundances for 106 stars) purely

as a clustering problem, then even the most efficient

clustering algorithms would incur a significant cumula-

tive computational overhead by searching the parame-

ter space for the number of clusters, and the optimal

model parameters given that number of components.

However, because the mixture of factor analyzers ap-

proach assumes that there is a lower dimensional latent

space in which the data are clustered, and that cluster-

ing is projected into real space by common factor loads,

the dimensionality of the clustering problem is reduced

from N ×D to N × J . This reduces computational cost

through faster execution of each optimization step, and

on average fewer optimization steps needed to reach a

specified convergence threshold.

From a statistical standpoint, the primary advantage

to using a mixture of factor analysers is that we can

simultaneously estimate latent factors (e.g., infer nucle-

osynthetic yields) and perform clustering (e.g., chemi-

cal tagging) within a statistically consistent framework.

That is to say that we have a generative data-driven

model that can quantitatively describe nucleosynthetic

yields, and the factor scores can explain the variance in

turbulence and gas mixing, or star formation efficiency,

and the parameters of this model can be simultaneously

estimated in a self-consistent way with a single scalar-

justified objective function.

Without loss of generality the density of the mean-

subtracted data X−µ (which we hereafter will refer to
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simply as Y) can be described as

f(Y; Ψ) =

K∑
k=1

πkφ(Y; Lξk,LΩkLᵀ + diag(D)) (3)

given J common factor loadings andK components clus-

tered in the latent (factor score) space. Here the pa-

rameter vector Ψ includes {L,π, ξ,Ω,D}, and φ(Y;θ)

describes the density of a multivariate gaussian distri-

bution, and πk describes the relative weighting of the

kth component in latent space and
∑

πK = 1. The log

likelihood is then given by

logL(Y|Ψ) =

K∑
k=1

log f(Y; Ψ) . (4)

The model as described is indeterminate in that there

is no unique solution for the factor loads L and scores

S. These quantities can only be determined up until

orthogonality in L. However, as we will describe in Sec-

tion 2.2, with suitable priors on Ψ one can efficiently

estimate the model parameters using the expectation-

maximization algorithm (Dempster et al. 1977).

2.1. Initialisation

Here we describe how the model parameters are ini-

tialised.2 To initialise the factor loads L we start by ran-

domly drawing a D×D matrix from a Haar distribution

(Haar 1933), which is uniform on the special orthogonal

group SO(n) and therefore guaranteed to return an or-

thogonal matrix with a determinant of unity (Stewart

1980). We denote the J × D left-most region of this

matrix to be H, and by taking L∗ to be the Cholesky

decomposition of HᵀH, we initialise the factor loads as

L = H
(

(L∗)
−1

I
)

(5)

which ensures that L is a J × D matrix of mutually

orthogonal vectors. We then initially assign each data

point as belonging to one of the K components using

the k-means++ algorithm (Arthur & Vassilvitskii 2007)

in the pseudo-latent space YL. Given the initial fac-

tor loads and assignments, we then estimate the relative

weights π, the mean factor scores of each component

ξ, and the covariance matrix of factor scores of each

component Ω. Finally, we initialise the specific vari-

ance D in each dimension as the variance in each data

dimension. Other initialisation methods for the latent

factors include singular value decomposition (Golub &

2 This describes the default initialisation approach. Other ap-
proaches are available in the accompanying software.

Reinsch 1970) or generating random noise with orthogo-

nal constraints, and random assignment is an alternative

method that is available for initialising assignments.

Throughout this work we repeat this initialisation pro-

cedure 25 times for every trial of J and K for a given

data set. We then run expectation-maximization (Sec-

tion 2.2) from each initialisation until the log likelihood

improves by less than 10−5 per step, and we adopt the

model with the highest log likelihood as the preferred

model given that trial of J , K, and the data. Although

this optimisation procedure is not convex, in practice it

is normally sufficient to initialise from many points to

avoid local minima.

2.2. Expectation-Maximization

We use the expectation-maximization algorithm to es-

timate the model parameters (Dempster et al. 1977).

With each expectation step we evaluate the log likeli-

hood given the model parameters Ψ and we calculate

the N ×K responsibility matrix τ whose entries are the

posterior probability that the nth data point is associ-

ated to the kth component, given the data Y and the

current estimate of the parameter vector Ψ:

τnk =
πkφ(Yn; Lξk,LΩkLᵀ + diag(D))∑G
g=1 πgφ(Yn; Lξg,LΩgL

ᵀ + diag(D))
. (6)

At the maximization step we update our estimates of

the parameters Ψ, conditioned on the data Y and the

responsibility matrix τ . The updated parameters esti-

mates are found by setting the second derivative of the

log likelihood (Eq. 4) to zero and solving for the pa-

rameter values.3 In doing so this guarantees that every

updated estimate of the model parameters is guaran-

teed to increase the log likelihood. Although there are

no guarantees against converging on local minima, in

practice it is sufficient to run expectation-maximization

from multiple initialisations (as we do) in order to ensure

that the global minima is reached. At the maximization

step we first update our estimate of the relative weights

π(t+1) given the responsibility matrix τ

π
(t+1)
k =

1

N

N∑
n=1

τnk (7)

where the Ψ(t) superscript refers to the current parame-

ter estimates and Ψ(t+1) refers to the updated estimate

3 Strictly this introduces a statistical inconsistency in that we
should update our parameter estimates by setting the second
derivative of our information-theoretic objective function (Eq. 37)
to zero instead of the log likelihood, but this inconsistency only
becomes serious with small N – precisely the opposite situation of
chemical tagging!
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for the next iteration. The updated estimates of the

mean factor scores ξ(t+1) for each component are then

given by

ξ
(t+1)
k = ξ

(t)
k +

Gᵀ(Yᵀ − L(t)ξ
(t)
k )τ k

Nπ
(t+1)
k

(8)

where:

W = (Ω
(t)
k )−1I (9)

V =
(
D(t)

)−1

(10)

C = (W + (L(t))ᵀVL(t))−1I (11)

G =
[
V −VL(t)C

(
VL(t)

)ᵀ]
L(t)Ω

(t)
k . (12)

The covariance matrices of the components of factor

scores Ω(t+1) are updated next,

Ω
(t+1)
k =

(
I−GᵀL(t)

)
Ω

(t)
k +

GᵀZ (Zτᵀ
k)

ᵀ
G

Nπ
(t+1)
k

(13)

where

Z = Yᵀ − L(t)ξ
(t)
k . (14)

After some linear algebra, updated estimates of the

common factor loads L(t+1) can be found from

L(t+1) = La

(
L−1
b I
)

(15)

where:

La =

K∑
k=1

[
τᵀ
kY
(
ξ

(t)
k

)ᵀ
+ Gᵀτ kZᵀG

]
(16)

Lb =N

K∑
k=1

[
π

(t+1)
k

(
Ω

(t+1)
k + ξ

(t+1)
k

(
ξ

(t+1)
k

)ᵀ)]
(17)

Finally, the updated estimate of the specific variances

D(t+1) are given by

D(t+1) =
1

N

 K∑
k=1

τᵀ
k (Y�Y)−

J∑
j=1

(
L(t+1)Lb

)
� L(t+1)


(18)

where � denotes is the entry-wise (Hadamard) prod-

uct. Throughout this work we assume that the data are

noiseless and we do not add any observed errors to the

constructed covariance matrices.

2.3. Missing data

The expectation-maximization procedure as described

requires that there be no missing data entries in order to

update our estimates of the responsibility matrix τ and

the model parameters Ψ. In practice, however, there

will often be abundance measurements that are missing

for some subset of stars. There are many potential rea-

sons for this, including astrophysical explanations (e.g.,

an absorption line was not present above the noise), ob-

servational limitations (e.g., the signal-to-noise ratio was

too low, or contamination by a cosmic ray), or various

other reasons that cannot be inferred from the available

information.

In this work we will assume that any missing data

measurements are missing at random. The missing data

points can then be treated as unknown parameters that

must be solved for (and updated) at each iteration. Ini-

tially we impute zeros for missing data entries in Y, and

at each iteration we update these imputed valuee with

our estimate of what the missing data values are given

the current model parameters. This ensures that the

log-likelihood increases with each iteration. Similarly,

with each update we inflate our estimates of the specific

variances based on the fraction of missing data points in

each dimension

D
(t+1)
d = D

(t+1)
d

(
N

N −M

)
(19)

where M is a the number of missing data entries in the

dth dimension. In Section 3.2 we show with a toy model

that the latent factor loads and scores can be reliably es-

timated even in the presence of high fractions of missing

data (e.g., 40%), conditioned on our assumption that

the data are missing at random.

2.4. Model Selection

The expectation-maximization algorithm as described

requires a specified number of latent factors J and K. In

the next Section we describe a toy model using generated

data where we will assume that the true number of la-
tent factors and components are not known. We require

some heuristic to decide how many latent factors and

components are preferred given some data. An increas-

ing number of factors and components will undoubtedly

increase the log likelihood of the model given the data,

but the log likelihood does not account for the increased

model complexity that is afforded by those additional

latent factors and components.

One criterion commonly employed for evaluating a

class of models is the Bayesian Information Criterion

(BIC; Schwarz 1978),

BIC = Q logN − 2 logL (Y|Ψ) , (20)

where Q is the number of parameters in this model:

Q =
J

2
[2 (D − J) +K (3 + J)] +K +D − 1 . (21)
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While the BIC does include a penalisation term for

the number of parameters (which scales with logN),

it does not describe for the increased flexibility that is

afforded by the addition of those parameters. For ex-

ample, adding one parameter to a model will increase

the BIC by at most logN , but there are different ways

for a single parameter to be introduced. In a fictitious

model y = f(x) a parameter b could be added that is

a scalar multiple of x, or it could be introduced as xb.

Despite the difference in model complexity, the same

penalisation occurs in BIC. Even if the log likelihood

were only to improve marginally in both cases, the dif-

ference in model complexity is not captured by BIC.

In other words, there are situations where we are more

interested in balancing the model complexity (or the ex-

pected Fisher information and similar properties) with

the goodness of fit, instead of penalising the number of

parameters.

For these reasons we use the Minimum Message

Length (MML; Wallace 2005) principle as a criterion

for model selection and evaluation. The classically-

described principle of MML is that the best explanation

of the data given a model is the one that leads to

the shortest so-called two-part message (Wallace 2005),

where a message takes into account both the complexity

of the model and its explanatory power. The complexity

of the model is described through the first part of the

message, and the second part of the message describes

its explanatory power. The length of each message part

is quantified (or estimated) using information theory,

allowing for a fair evaluation between different models

of varying complexity or explanatory power. MML has

been shown to perform well on a variety of empirical

analyses (see, e.g., Viswanathan et al. (1999); Fitzgib-

bon et al. (2004), with references to further examples in

Wallace (2005); Dowe et al. (2007); Dowe (2008, 2011)).

Arguments about the statistical consistency (i.e., as

the number of data points increases the distributions

of the estimates become increasingly concentrated near

the true value) of MML are given in Dowe & Wallace

(1997); Dowe (2011). The MML principle requires that

we explicitly specify our prior beliefs on the model pa-

rameters, providing a Bayesian optimisation approach

which can be applied across entire classes of models.

The message must encode two parts: the model, and

the data given the model. The encoding of the mes-

sage is based on Shannon’s information theory (Shan-

non 1948). The information gained from an event e

occurring, where p(e) is the probability of that event,

is I(e) = − log2 p(e). The information content is largest

for improbable outcomes, and smallest for outcomes that

we are almost certain about. In other words, an out-

come that has a probability close to unity has nearly

zero information content because almost nothing new

is learned from it, whereas rarer events convey a much

higher information content.

In practice calculating the message length can be a

non-trivial task, especially for models that are reason-

ably complex. This makes the strict MML principle

intractable (or uncomputable) in many cases and ne-

cessitates approximations to the message length. Using

a Taylor expansion, a generalised scheme can be calcu-

lated to estimate the parameter vector Ψ that minimises

the message length I(Ψ,Y) (Wallace & Freeman 1987),

I(Ψ,Y) =
Q

2
log κQ−log

(
p(Ψ)√
|F(Ψ)|

)
−logL (Y|Ψ)+

Q

2

(22)

where logL(Y|Ψ) is the familiar log likelihood, p(Ψ) is

the joint prior density on Ψ, F(Ψ) is the negative second

derivative of the log likelihood, commonly referred to as

the expected Fisher information matrix,

F(Ψ) = −E

[
∂2

∂Ψ2 logL(Y|Ψ)

]
(23)

and as before Q is the number of model parameters.

Continuous parameters can only be stated to finite pre-

cision, which leads to the Q
2 log κQ term that gives a

measure of the volume of the region of uncertainty in

which the parameters Ψ are centred. The log κQ term

is

log κQ = − log 2π +
1

Q
logQπ − γ − 1 (24)

where γ is Euler’s constant.

Like the BIC, the message length is penalised by the

number of model parameters through the log κQ term.

However, the model complexity is also described through
the priors and the Fisher information, which describes

the curvature of the log likelihood with respect to the

model parameters. For these reasons, MML provides a

more accurate description of the model complexity (or

flexibility) because it naturally includes the curvature of

the log likelihood with respect to the model parameters

rather than only penalising models based on the number

of parameters.

We will describe the contributions to the message

length in parts. We assume the priors on the number

of latent factors J and the number of components K to

be p(J) ∝ 2−J and p(K) ∝ 2−K respectively, such that

fewer numbers are preferred. The optimal lossless mes-

sage to encode each is (Sec. 6.8.2; Knorr-Held 2000),

I(J) = − log p(J) = J log 2 + constant (25)

I(K) = − log p(K) = K log 2 + constant . (26)
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Only K − 1 of the relative weights π need encoding

because
∑K

k=1 πk = 1. We assume a uniform prior on

individual weights,

p(π) = (K − 1)! , (27)

and the Fisher information is

F(π) =
NK−1∏K
k=1 πk

, (28)

which gives the message length of the relative weights

I(π) to be

I(π) =− log

(
p(π)√
|F(π)|

)

=− log p(π)− 1

2
log |F(π)|

=− log(K − 1)! +
K − 1

2
logN − 1

2

K∑
k=1

log πk

I(π) =
1

2

(
(K − 1) logN −

K∑
k=1

log πk

)
− log Γ(K) .

(29)

We assume uniform priors for the component means

in latent space ξ, where the bounds are large enough

outside the range of observable values such that those

priors are proper (integrable) – a necessary condition

for the MML principle – and only add constant terms to

the message length, which can be ignored. We assume

a conjugate inverted Wishart prior for the component
covariance matrices Ω (Section 5.2.3; Knorr-Held 2000),

p(ξk,Ωk) ∝ |Ωk|
1
2 (J+1) . (30)

We approximate the determinate of the Fisher informa-

tion of a multivariate normal |F(ξ,Ω)| as |F(ξ)||F(Ω)|
(Oliver et al. 1996; Figueiredo & Jain 2002) where

|F(ξ)| = (Nπk)J |Ωk|−1 (31)

|F(Ω)| = (Nπk)
1
2J(J+1)2−J |Ωk|−(N+1) (32)

such that

I(ξ,Ω) =−
K∑

k=1

log p(ξk,Ωk) +
1

2

K∑
k=1

log |F(ξk,Ωk)|

=
1

2

K∑
k=1

log
[
(Nπk)

1
2J(J+3)2−N |Ωk|−(N+2)

]
· · · −

K∑
k=1

log |Ωk|
1
2 (J+1)

(33)

I(ξ,Ω) =
1

4
J(J + 3)

K∑
k=1

logNπk −
KD

2
log 2

· · · − 1

2
(2J + 3)

K∑
k=1

log |Ωk| . (34)

Previous work on multiple latent factor analysis

within the context of MML have addressed the inde-

terminacy between the factor loads and factor scores by

placing a joint prior on the product of factor loads and

scores (Wallace 1995). Adopting the same prior density

in our model is not practical because it would require

the priors p(ξ|τ ,π) and p(Ω|τ ,π). That is, we would

require a prior density on both the means ξ and covari-

ance matrices Ω in latent space that requires knowledge

about the responsibility matrix τ and relative weights

π in order to estimate the effective scores S for each

data point and calculate a joint prior on the product

of the factor loads L and factor scores S. Instead we

address this indeterminacy by placing a prior on L that

ensures it is mutually orthogonal. Specifically, we adopt

a Wishart distribution with scale matrix W and D de-

grees of freedom for the J × J matrix M = LᵀL. In

other words, M ∼ WJ(D,W) and W = Cov(Lᵀ). This

Wishart joint prior density gives highest support for

mutually orthogonal vectors,

p(L) =
|LᵀL| 12 (D−J−1)

2
DJ
2 |W|D2 Γ(D

2 )
exp

[
−1

2
Tr(W−1LᵀL)

]
.

(35)

Thus the message length to encode L is given by

I(L) =− log

(
p(L)√
|F(L)|

)

I(L) =
1

2
Tr(Cov(Lᵀ)−1LᵀL)− 1

2
(D − J − 1) log |LᵀL|

· · · +
1

2
DJ log 2 +

1

2
D log |Cov(L)| − Γ

(
D

2

)
(36)

Combining equations 25, 26, 29, 34, and 36 with equa-

tion 22 leads to the full message length:
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I(Ψ,Y) =− logL(Y|Ψ) +
1

4
(J + 4) (J − 1)

K∑
k=1

log πk +

(
K − 1

2

)
logN +

1

2
D log |Cov (Lᵀ) |

· · · − 1

2
(D − J − 1) log |LᵀL|+ Tr

(
Cov (Lᵀ)

−1
LᵀL

)
−
(
J +

3

2

) K∑
k=1

log |Ωk| − log Γ (K)− Γ

(
D

2

)
· · ·+ Q

2
log κq +

1

2
[J(D + 2) +K(2−N)] log 2 . (37)

3. EXPERIMENTS

3.1. A toy model

Here we introduce a toy model where we use generated

data to verify that we recover the true model parameters

given some data, and to ensure that the expectation-

maximization method is yielding consistent results. We

generated a data set with N = 100,000 data points, each

with D = 15 dimensions. We adopted a latent dimen-

sional space of J = 5 factor loads such that the vector

L has shape J × D, with K = 20 clusters in the la-

tent space. We generated the random factor loads in

the same way that we initialise the optimisation (Sec-

tion 2.1). The relative weights π are drawn from a

multinomial distribution and the means of the clusters

in factor scores ξ are drawn from a standard normal

distribution. The off-diagonal entries in the covariance

matrices in factor scores Ω are drawn from a gamma

distribution Ωk,i,i ∼ Γ (1). The variance in each dimen-

sion D are also drawn D ∼ Γ (1). The nth data point

(which belongs to the kth cluster) is then generated by

drawing Sn ∼ N (ξk,Ωk), projecting by the factor loads

L, and adding variance D.

We treat the generated data set as if the number of

latent factors and components are not known. Starting

with J = 1 and K = 1, we trialled each permutation of

J and K until Jmax = 10 and Kmax = 40 (e.g., twice

the true values of Jtrue and Ktrue).

We recorded the negative log likelihood, the BIC, and

the message length4 for each permutation of J and K.

These metrics are shown in Figure 1. Unsurprisingly the

negative log likelihood increases with increasing num-

bers of latent factors J and increasing numbers of com-

ponents K. The lowest BIC value and message length

is found at J = 5 and K = 20, identical to the true

values. It is clear from Figure 1 that a combination

of latent factors and clustering in the latent space pro-

vides a better description of the (generated) data than a

gaussian mixture model without latent factors. Adding

4 Omitting constant terms such that negative message lengths
are allowed.

components to the model does improves the log likeli-

hood, even with a single latent factor, but the addition

of just one latent factor improves the log likelihood more

so than adding twenty components. Not much more can

be said for this example because the true data generat-

ing process is known, but this toy model does illustrate

how clustering in high dimensional data can be better

described by latent factors with clustering in the lower

dimensional latent space.

Some technical background is warranted before we

compare our estimated model parameters to the true

values. We previously stated that the latent factors in

this model are only identifiable up to an orthogonal ro-

tation. That is to say that if the data were truely gener-

ated by latent factors Ltrue, then our estimates of those

latent factors Lest do not need to be identical to the

true values. For example, the ordering of the estimated

factors could be different from the true factors, and the

ordering of the dimensionality in latent space would then

be accordingly different. Since no constraint is placed

on the ordering of the factor loads during expectation-

maximization, there is no assurance (or requirement)

that our factor loads match the true factor loads.

Another possibility is that the estimated factor loads

could be flipped in sign relative to the true factor loads,

and the scores would similarly be flipped. In both of

these situations (reordering or flipped signs) the log like-

lihood given the data and the estimated factor loads Lest

would be identical to the log likelihood given the data

and the true factor loads Ltrue despite the difference in

ordering and sign. The same can be said for any other

scalar metric (e.g., Kullback-Leibler divergence; Kull-

back & Leibler 1951). These examples serve to illustrate

a more general property that the factor loads and factor

scores can be orthogonally rotated by any valid rotation

matrix 5 R. The estimated factor loads Lest could there-

fore appear very different from the true values, but they

only differ by an orthogonal rotation. We discuss the

impact of this limitation on real data in more detail in

Section 4.

5 Recall that a rotation matrix is valid if RRᵀ = I .
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Figure 1. The top panel shows the negative log likelihood
− logL (Y|Ψ) evaluated at each combination of latent fac-
tors J and number of clusters K using the generated data in
our toy model. The middle panel shows the BIC (Eq. 20) for
those combinations, and the lower panel shows the message
length. The white marker indicates the lowest value in each
panel, showing the preferred number of latent factors and
components. The black marker indicates the true value.

We took the model with the preferred number of la-

tent factors and components found from a grid search

(K = 20, J = 5; which are also the true values) and

applied an orthogonal rotation to the latent space to

be as close as possible to the true values. The rotation

matrix R was found by solving for J unknown angle pa-

rameters, each of which is used to construct a Givens

rotation matrix (Givens 1958), and then we take the

product of those Givens matrices to produce a valid ro-

tation matrix R. This process reduces to Euler angle

rotation in three or fewer dimensions. This process ro-

tates the latent space (L, ξ, Ω), but has no effect on the

model’s predictive power: the evaluated log likelihood

or the Kullback-Leibler divergence (Kullback & Leibler

1951) under the rotated model is indistinguishable from

the unrotated model. In Figure 2 we show the estimated

factor loads L, factor scores S, and specific variances D

compared to the true values. The agreement is excellent

in all model parameters.

3.2. A toy model with data missing at random

Here we repeat the toy model used in the previous ex-

periment, but we discard an increasing fraction of the

data and evaluate the performance and accuracy of our

method in the presence of incomplete data. We consid-

ered missing data fractions from 1% to 40%. In each

case we treated the model parameters as unknown, as-

sumed the missing data points were missing at random,

and initialised the model as per Section 3.1.

In Figure 3 we show the results of this experiment

for our worst considered case, where 40% of the data

entries are randomly discarded. We find that despite

the high fraction of missing entries, our estimates of the

model parameters remain unbiased in this example us-

ing a toy model. The corrections to our estimates of

the specific variances are sufficient, in that the specific

variance in each dimension is not systematically under-

estimated from the true values, despite that 40% of the

data entries are missing.

3.3. The Galah survey

In this experiment we perform blind chemical tag-

ging using the photospheric abundances released as part

of the second Galah data release (Buder et al. 2018).

This data set includes up to 23 chemical abundances re-

ported for 342,682 stars. In this example we chose to

restrict ourselves to stars with a complete set of abun-

dance measurements for a subset of those 23 elements

(i.e., no missing data entries). For example, here we

will exclude lithium and carbon abundances because the

photospheric values will vary throughout a star’s life-
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Figure 2. The estimated factor loads L (left), factor scores S (middle), and specific variances D (right) compared to the true
data generating values for Experiment 1 (Section 3.1). The agreement is excellent.

Figure 3. The estimated factor loads L (left), factor scores S (middle), and specific variances D (right) compared to the true
data generating values for Experiment 2 (Section 3.2. Here 40% of the data are missing at random. The agreement remains
excellent, despite the large fraction of missing data entries.

time (e.g., Casey et al. 2016b, 2019). This is true to

a small degree for many elements (e.g., Dotter et al.

2017), but for the purposes of this experiment we assume

that all other photospheric abundances remain constant

throughout a star’s lifetime.

We first selected stars with flag cannon = 0 to ex-

clude stars where there is reason to suspect that the

stellar parameters (e.g., Teff , log g) are unreliable, and

as a result the detailed chemical abundances would be

untrustworthy. We then took all stars with a signal-to-

noise ratio exceeding 40 in the blue arm (snr c1 > 40),

and stars with no erroneous flags in all of the following

abundances: Na, Al, Si, K, Ca, Sc, Ti, V, Mn, Fe, Ni,

Cu, Zn, Y, Ba, La, and Eu. These elements were chosen

because they trace multiple nucleosynthetic pathways,

and they are more commonly reported in the Galah data

release, allowing for a larger number of stars with a com-

plete abundance inventory. There are 1,072 stars that

met these criteria.

We executed a grid search for the number of latent

factors J and the number of components K that were

preferred by the data. Starting with J = 1 and K = 1,
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Figure 4. The top panel shows the negative log likelihood
− logL (Y|Ψ) evaluated at each combination of latent fac-
tors J and number of clusters K using Galah data in Exper-
iment 3. The middle panel shows the BIC for those combi-
nations, and the lower panel shows the message length. The
white marker indicates the lowest value in each panel, show-
ing the preferred number of latent factors and components.

we trialled each permutation of J and K up until J = 7

and K = 5. The results of this grid search are shown in

Figure 4, where we show the negative log likelihood, the

BIC, and message length found for each permutation.

The behaviour of the BIC and the message length are

very different here, unlike what was observed in our toy

model. Here the BIC behaviour appears similar to the

negative log likelihood in that the BIC prefers higher

components and latent factors than the extent of the

grid (e.g., J > 7 and K > 5). The model with five

latent factors and three components (J = 5, K = 3)

is found to have the shortest message length, which we

take as our preferred model for these data.

Earlier we described how the latent factors we esti-

mate can only be identified up until an orthogonal rota-

tion. If we want to interpret the latent factors estimated

from Galah data, then we must specify some target fac-

tor loads such that we can identify which factors are

most similar to the yields we expect. We specified the

following target latent factors where:

• The first factor load should have non-zero entries

in Eu and La (e.g., the r-process).

• The second factor load should have non-zero en-

tries in Ba, Y, and La (e.g., the s-process).

• The third factor load should have non-zero entries

in Fe-peak elements Sc, V, Mn, Fe, Ni, Cu, and

Zn.

• The fourth factor load should have non-zero en-

tries in the α-element tracers Si, Ca, and Ti.

• The fifth factor load should have non-zero entries

in the light odd-Z elements Na, Al, and K.

We initially set each non-zero entry in these target fac-

tor loads Ltarget to E− 1
2 , where E is the number of non-

zero entries in that factor load, to ensure that Ltarget

is mutually orthogonal. We solved for the J unknown

angles to produce a valid rotation matrix R that would

make our estimated loads L as close as possible to the

target loads Ltarget, and then applied that rotation to

the model. The target loads and (rotated) estimated

loads are shown in Figure 5. Note that the purpose of

this procedure is not to ‘find’ the target loads that we

expect, but to provide as little information needed in

order to identify and describe all factor loads within an

astrophysical context. This procedure still requires that

the factors be mutually orthogonal and that they de-

scribe the data. For these reasons, we will not always

recover the exact target loads we seek: we will only be

able to identify factor loads that are closest to the target

loads.
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This is demonstrated in Figure 5, where some esti-

mated factor loads match closely to the target load (e.g.,

L2 which we identify as the s-process), and some barely

match at all (e.g., L5). Here we show the absolute entry

of the factor loads because even if an entry is negative,

the corresponding factor scores could also be negative,

and their product will contribute to the observed abun-

dances. For this reason the sign does not matter here.

Some of these factor load entries may be non-zero

because we require the latent factors to be mutually

orthogonal, and not because they truly contribute to

the data. To try and disentangle these possibilities,

we calculate the fractional contribution that factor load

makes to the observed abundances relative to other fac-

tor loads. We define the fractional contribution of the



A data-driven model of nucleosynthesis with chemical tagging in latent space 13

Na
Al

Si
K

Ca
Sc

Ti
V

Mn
Fe

Ni
Cu

Zn
Y

Ba
La

Eu
0.00

0.05

0.10

0.15
sp

ec
ifi

c
sc

at
te

r
/

d
ex
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√

D) remaining in the Galah
data (Buder et al. 2018) after accounting for the contribu-
tions by all latent factors.

jth factor load to the dth data dimension as:

Cd,j =

∑N |Lj,dSn,j |∑J∑N |Lj,dSn,j |
. (38)

The fractional contributions to each element are shown

in the right hand side of Figure 5. We identify the first

factor L1 as being most similar to the r-process, and here

it is the dominant contributor to Eu, a typical r-process

tracer. Surprisingly we also find that this factor load is

a reasonable contributor to the Fe-peak element Sc. The

specific scatter in Sc is 0.03 dex (Figure 6), suggesting
that the Sc abundances are well-described by this latent

factor model.

The second latent factor L2 here is most representa-

tive of the slow neutron capture process (s-process), with

dominant contributions to Ba, Y, and La. This factor

has some support at other elements, notably K. Most Sc

is contributed by L3, our Fe-peak latent factor. In fact

L3 is the primary contributor to nearly all Fe-peak ele-

ments, with close to negligible contributions from other

factors. The exception here is Zn, where a near-equal

contribution comes from L5. The third latent factor L4

is reasonably well behaved. It is the dominant contribu-

tor to the α-element tracers Si, Ca, and Ti, and surpris-

ingly, Al. It also seems to contribute a non-zero fraction

to Eu, with negligible contributions elsewhere. The spe-

cific scatter after accounting for these latent factors is

smallest for Fe (0.01 dex) and largest for K (0.13 dex;

Figure 6). The typical scatter in most elements is about

0.05 dex.

In Figure 7 we show the inferred clustering in latent

space, where the separation between components is ar-

guably best seen in the splitting between S5 with re-

spect to S2 or S3. When projected to data space (Fig-

ure 8) the third component (dark green) is seen to have

relatively higher abundance ratios of [K,Ba,Zn/Fe] at

a given [Fe/H], and lower abundance ratios of [V/Fe].

This is consistent with the clustering in latent space.

3.4. Galah survey data with an increasing number of

stars with missing data entries

Here we extend our experiment in Section 3.3 to pro-

gressively include more stars, even though those stars

have some abundance measurements missing. Specifi-

cally we started with the same subset of 1,072 stars in

Section 3.3 and added a random set of stars that met

our criteria of flag cannon = 0 and snr c1 > 40.

We initially added 100 stars to give a sample of N =

1,172, then repeated the grid search for the number of

latent factors and components, and recorded the model

with the lowest message length. We then repeated this

procedure using 1,000 stars (N = 2,072), again with

10,000 (N = 11,072), and finally using all 99,174 stars

that met the criteria of flag cannon = 0 and snr c1 >

40 to give a total sample size of N = 100,246 stars.

For sample sizes up to N ∼2,000 we found that five

latent factors were preferred, and these factors shared

common features (Figure ??). This illustrates that the

first6 set of inferred factor loads inferred from a smaller,

complete data set, remain largely unchanged despite

the increasing sample size and the increasing number

of missing data entries. When the sample size reaches

N =11,072 we find another three latent factors are re-

quired to best explain the data.

When N ∼ 100,000, the preferred number of latent

factors rises to twelve. Of note among these factors

is L9, where no ‘target load’ was prescribed7, and the

non-zero entries mimic what might be expected from

a light s-process production. Similarly, L10 has near

zero contributions everywhere except among the light

elements Al, K, Ca, and Sc. With this data set we find

that K = 16 components are preferred in latent space.

6 ‘First’ has no concept here in terms of factor load ordering, but
for the purposes of comparing inferred loads from different data
sets we have ordered the loads to be as close to those inferred in
Section 3.3.

7 Although no ‘target load’ was prescribed here, this statement
should be interpreted with caution because the mutual orthogo-
nality constraint exists and the remaining factors do have target
loads.



14 Casey et al.

−1

0

1

S
2

−2

0

2

S
3

−2

−1

0

1

S
4

−0.5 0.0 0.5

S1

−1

0

1

S
5

−1 0 1

S2

−2.5 0.0

S3

−2 0

S4

Figure 7. The factor scores S estimated in Experiment 3 (Section 3.3 using N = 1,072 stars in the Galah data (Buder et al.
2018) that have 18 abundance measurements. Here each star is coloured by its inferred component.

None of these components appear coherently structured

in their positions or motions.

4. DISCUSSION

We have introduced a model to simultaneously ac-

count for the lower effective dimensionality of chemical

abundance space, and perform clustering in that lower

dimensional space. This provides a data-driven model

of nucleosynthesis yields and chemical tagging that al-

lows us to simultaneously estimate the latent factors

that contribute to all stars, and cluster those stars by

their relative contributions from each factor. The re-

sults are encouraging in that we find latent factors that

are representative of the expected yields from dominant

nucleosynthetic channels. However, the model that we

describe is very likely not the correct model to use to
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Figure 8. Detailed chemical abundances from the N = 1,072 stars in Galah (Buder et al. 2018) that have 18 chemical
abundances (Section 3.3). Each star is coloured by its inferred component from the lower-dimensional latent space.
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Figure 9. Latent factors found in Section 3.4 using different subsets of Galah data (Buder et al. 2018). The thin solid line
shows the result from Section 3.3 with N = 1, 072 stars with 18 abundances and no missing data. Increasing thickness indicates
larger samples, up to the solid thick line with N ∼ 100,000 stars, where twelve latent factors are preferred.
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represent chemical abundances of stars. Here we discuss

the limitations of our model in detail.

We require latent factors to be mutually orthogonal

in order to resolve an indeterminacy. This suggests an

astrophysical context where the mean nucleosynthetic

yields (integrated over all stellar masses and star for-

mation histories) of various nucleosynthetic processes

(e.g., r-process, s-process) are mutually orthogonal to

each other. Clearly this assumption is likely to be in-

correct: the nuclear physics of one environment where

elements are produced will be very different from oth-

ers, and there is no astrophysical constraint that those

yields (or latent factors) should be mutually orthogo-

nal. In principle one could represent the latent factors

using a hierarchical data-driven model where the yields

contribute as a function of stellar mass, metallicity, and

other factors, but in principle to resolve the indetermi-

nacy in this model would still require mutual orthogo-

nality on the mean yields. Introducing a constraint on

the factor scores that resolves this indeterminacy and

allows for more flexible latent factors would be a worthy

extension to this work.

The constraint of mutual orthogonality limits the in-

ferences we want to make about stellar nucleosynthetic

yields. For example, after accounting for all known

sources of potassium production in the Milky Way,

galactic chemical evolution models under-predict the

level of K in the Milky Way by more than an order of

magnitude (Kobayashi et al. 2006). From our inferences

using Galah data, we find that L1 – the factor we iden-

tify as the s-process – is the dominant contributor to

potassium. This latent factor persists even in the pres-

ence of missing data, and a sample size two orders of

magnitude larger. Does this suggest production of K is

linked to the production of much heavier nuclei? If our

model could confidently and reliably associate the pro-

duction of K with other elements or sites then it could

help explain the peculiar abundances of stars enhanced

in K and depleted in Mg (Mucciarelli et al. 2012; Co-

hen & Kirby 2012) – a chemical abundance pattern that

currently lacks explanation (Iliadis et al. 2016; Kemp

et al. 2018). In the (Cohen & Kirby 2012) sample their

high [K/Fe] stars also tend to be high in heavier ele-

ments, but there are also numerous abundance correla-

tions present. However, is the K contribution that we

infer physically realistic, or is it a consequence of re-

quiring that the latent factors are mutually orthogonal?

Distinguishing these possibilities is non-trivial, which is

in part why caution is warranted when trying to inter-

pret latent factor models. In this situation it is worth

commenting that K has the largest specific scatter (Fig-

ure 6), suggesting that the contributions of K are per-

haps not as well described by the latent factor model

as other elements. Still, the specific model scatter is far

less than the observed scatter, indicative that the model

does have some predictive power.

A similar argument could be made for Sc, where L1 – a

factor load we identify as the r-process – is the secondary

contributor. Sc is under-produced in galactic chemi-

cal evolution models relative to observations (Kobayashi

et al. 2006; Casey & Schlaufman 2015). Based on this

work, is the production of Sc linked to the production of

heavy nuclei? Unlike K, the specific scatter in Sc is re-

markably low: just 0.03 dex, among the best-described

elements after Ti and Fe (0.01 dex). This would suggest

that the latent factor model is a very good description

for the production of Sc, but it does not prove that it is

the description for the production of Sc.

There are other issues in our model that relate to our

assumption of mutual orthogonality. Even if nucleosyn-

thetic yields were truely mutually orthogonal, then the

latent factors we infer are only identifiable up until an or-

thogonal basis. As we have seen in our experiments, the

ordering and sign of the latent factors is not described

a priori. This is both a feature and a bug: unrestricted

ordering and signs allow for the model parameters to be

estimated more efficiently because they can freely rotate

as the model parameters are updated, but it does mean

that we must ‘assign’ the latent factors we infer as be-

ing described by an astrophysical process (e.g., the first

latent factor is r-process). A more general limitation of

this is that the latent factors can be multiplied by some

arbitrary rotation matrix, leading to latent factor loads

that are very different from what was estimated by the

model, but still lead to the exact same data (or log like-

lihood, or Kullback-Liebler divergence, etc). As a conse-

quence, we can only ‘identify’ latent factors up until this

rotation. We have sought to address this by construct-

ing rotation matrices where the entries for each latent

factor correspond to our expectations from astrophysi-

cal processes (whilst remaining orthogonal), but here we

are limited by what astrophysical processes we are ex-

pecting to find within the constraint of being mutually

orthogonal.

This in part constrains our ability to identify new nu-

cleosynthetic processes. For example, let us consider

a hypothetical situation where we would only expect

there to be four nucleosynthetic processes that predom-

inately contribute to the observed Galah abundances,

but in practice we found that the data are best explained

with five latent factors. We construct a rotation matrix

where the first four latent factors describe the nucle-

osynthetic processes we expect to find. What of the

fifth latent factor? We can constrain the possible values
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of the fifth latent factor conditioned on the requirement

that all factors remain mutually orthogonal, but one can

imagine that some (or perhaps many) elements have en-

tries where the fifth latent factor can have near-zero or

zero entries. Even if the mean nucleosynthetic yields

are mutually orthogonal, there are scenarios that one

can imagine where there is a limited amount we can say

with confidence about that new nucleosynthetic process.

Notwithstanding these issues, we have shown that a

latent factor model which allows for clustering in latent

space can adequately describe chemical abundance data.

We find five latent factors from a small subset of Galah

data with complete abundances, and those latent fac-

tors can qualitatively be described within the context

of astrophysical yields. Those latent factors are recov-

ered in larger samples where the data are incomplete.

That did not have to be the case: the mutually orthog-

onal latent factors could be entirely different from our

expectations such that they did not have to match our

expectations of nucleosynthetic yields. Indeed, the in-

ferred factors – even after a valid rotation – could have

made no astrophysical sense whatsoever. For this rea-

son it is encouraging that there is some interpretability

in the latent factors. Indeed, in the elements where we

find surprising associations (e.g., Sc and K), these are

elements where galactic chemical evolution models are

most discrepant from observations, even after account-

ing for systematic errors in abundance measurements

(e.g., violations to the assumption of local thermody-

namic equilibrium).

In the subset of Galah data with complete abundances

we find that three components are preferred. These com-

ponents can be described as those with (1) low- and

(2) high-[α/Fe] abundance ratios, and another (3) pri-

marily differing in K, Ba, Zn, and V abundances at a

given [Fe/H] and [α/Fe] abundance ratio. When we in-

clude ∼100,000 stars with up to 18 abundances, and

assume the incomplete abundances are missing at ran-

dom, we find that 16 components in latent space are

preferred to explain the data. By construction these

components are structured in their chemical abundances

because of the projection from the latent space, and

by extension of each component having similar chem-

istry, each component occupies realistic locations in a

Hertzsprung-Russell diagram. When we project these

component associations to the data space we find that

none of the inferred components are structured or co-

herent in their positions or motions. However, in this

sample of stars there are no gravitationally bound clus-

ters where a reasonable (e.g. ∼30) number of stars have

been observed. Clearly, more data would help to resolve

a higher number of components.

Perhaps it is not so discouraging that none of the in-

ferred components are structured in their positions or

motions because there are no gravitationally bound clus-

ters in the data. But there is clearly more that can be

done in chemical tagging. Some components we infer

have stars with positions and galactic orbits that would

imply that they cannot have formed in the same star

cluster. In these situations there is likely significant

value in including joint probabilities on whether two

stars could be associated to the same star formation site

based on their dynamic properties. Similarly, although

stellar ages are historically difficult to estimate precisely,

can this imprecise information help inform weak priors

or probabilities of two stars having the same associa-

tion? There is an incredible amount of dynamical in-

formation available from Gaia, particularly for stars in

the Galah survey, and weakly informative priors might

be sufficient to help improve the granularity of chem-

ical tagging without being overly constraining on the

dynamical and star formation history we seek to infer.

5. CONCLUSIONS

We have introduced a data-driven model of nucleosyn-

thesis by incorporating latent factors that are common

to all stars, and allowing for clustering in the lower-

dimensional latent space. This approach simultaneously

allows us to efficiently tag stars based on their chemi-

cal abundances, and to infer the contributions that are

common to all stars (e.g., nucleosynthetic yields). Ex-

periments with generated data demonstrate that MML

is a useful principle for selecting the appropriate num-

ber of latent factors and components. Experiments with

Galah data reveal latent factors that are qualitatively

and quantitatively similar to expected nucleosynthetic

yields (e.g., products from the s-process, r-process, et

cetera). Interestingly we find that deviations from ex-

pected yields occur in elements where observations and

galactic chemical evolution models are most discrepant

(e.g., K, Sc). While we advise caution in directly in-

terpreting those latent factors as being nucleosynthetic

yields, our our model does provide the first data-driven

approach to nucleosynthesis and chemical tagging. We

advocate that more data, and the inclusion of weakly

informative priors – joint probabilities using astrometry

and a simplified model of the Milky Way – would help

in realising the full potential of chemical tagging.
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