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ABSTRACT

Galah is an ongoing high-resolution spectroscopic survey with a goal to disentangle the formation history of the Milky
Way, using fossil remnants of disrupted star formation sites which are now dispersed around the Galaxy. It features
a randomly selected magnitude limited (up to V = 14) sample of already 300,000 spectra in pursue of observing
1 Mio stars. We present a semi-automated classification scheme which identifies different types of peculiar spectral
morphologies, in an effort to discover and flag potentially problematic spectra and thus help to preserve the integrity
of the surveys results. To this end we employ a recently developed dimensionality reduction technique t-SNE (t-
distributed Stochastic Neighbour Embedding), which enables representing the complex spectral morphology in a low
dimensional projection map while still preserving the properties of the local neighbourhoods of spectra. The distribution
of normal single stars in the two dimensional space reveals correlation with stellar temperature, surface gravity and
metallicity, while the peculiar and problematic spectra with very diverse spectral features are grouped together in
separate areas, allowing their detection and classification. We find that the majority of the Galah dataset represents
normal spectra (167, 928), whereas 41, 605 spectra pertaining to 38, 633 stars are distributed into 10 classification
categories: hot stars, cool metal-poor giants, molecular abs. bands, binary stars, Hα/Hβ emission, Hα/Hβ emission
superimposed on absorption, Hα/Hβ P-cygni, Hα/Hβ inverted P-cygni, lithium absorption, and problematic. Spectra
with assigned categories are presented in the catalogue together with supplementary information on the observed
objects. The larger group of normal spectra enables a detailed analysis with existing stellar models, while some peculiar
categories represent candidates for follow-up observations and population studies of the short-lived phases of stellar
evolution detected in this randomly selected sample of stars.

1. Introduction

In recent times, the technology of optical-fibre spectro-
graphs has enabled very efficient large-scale automated
spectroscopic surveys. With the ability of observing up to
several hundred stars simultaneously, it is now possible to
obtain large numbers of spectra of high quality in a rea-
sonable amount of time (Watson 1987). Surveys such as
the Radial Velocity Experiment (Steinmetz et al. 2006),
the ongoing Gaia-ESO Survey (Gilmore et al. 2012), Galah
project (De Silva et al. 2015), and Gaia mission (Prusti
2012) with its future follow-up projects WEAVE (Dalton
et al. 2012) and 4MOST (de Jong et al. 2012) are some
of the leading examples of continuous production of over-
whelming amounts of data.

To get a general overview of the observed spectra and
learn more about the studied sample of stars in a spec-
troscopic survey such as Galah, it seems reasonable and
necessary to attack this task in an unbiased and automated
way. A common approach is to employ different numeri-
cal dimensionality reduction methods to reveal the com-
plex morphological structure of the dataset at hand. By
projecting the spectra onto a low dimensional space, it be-
comes feasible to grasp their inter-correlations and identify
diverse morphological groups, thus constructing a classifica-
tion of the whole dataset, and particularly its outstanding
features. A plethora of linear and non-linear mathemati-
cal techniques have been developed in the past decades to
tackle the problem of classification of complicated high-

dimensional data such as spectra, and were also success-
fully applied in the astronomical community (Matijevič et
al. 2012 and references therein).

Galah is an ongoing spectroscopic survey that aims at
unveiling the Milky Way’s history by studying the fossil
record of ancient star formation and accretion events pre-
served in stellar light. The detailed knowledge of the chem-
ical information of fossil remnants which have disrupted
and are now dispersed around the Galaxy is essential to
disentangling its formation history and explaining its cur-
rent stellar populations. Recent studies of chemical abun-
dances of stars in individual (undispersed) open clusters
show that their abundance distributions are homogeneous
to the level at which they can be measured, and their
abundances are different from cluster to cluster (conversely,
globular clusters may display inhomogenities, Bekki et al.
(2007)). This enables the technique of chemical tagging
(Freeman & Bland-Hawthorn 2002) to identify the fossil
remnants of old dispersed clusters from their abundance
patterns over many chemical elements. Galah will achieve
this by measuring up to 30 elemental abundances from 7
independent element groups each with 5 measurable abun-
dance levels, thereby obtaining enough independent cells
(57) in the multi-dimensional chemical abundance space (C-
space), in which stars from chemically homogeneous aggre-
gates (e.g. disrupted open clusters) will lie in tight clumps
(Freeman 2012). This level of accuracy and the amount of
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elemental abundance information by far surpasses any ex-
isting single or multiple system stellar studies.

The Galah automatic pipeline is currently running with-
out a classification processing stage. Manually scanning the
observed sample, it has become obvious that there is a sig-
nificant number of peculiar and otherwise problematic spec-
tra. Although the majority belong to single stars and can be
properly fit by synthetic spectra, neglecting the outliers can
lead to wrong results in both radial velocities, atmospheric
parameters, and especially detailed chemical abundances.
Finding outliers by comparison to databases of known pe-
culiar spectra might produce useful results, but would fail to
give a reliable classification of the whole sample. We there-
fore aim to diagnose and classify the diverse morphologies
in the Galah dataset with the goal to: (1) provide a clean
sample without any peculiar or problematic spectra so the
survey results can be more reliable, (2) identify any pe-
culiar spectra that are interesting per se and merit further
investigation, and (3) highlight all problematic spectra with
unpredictable effects from either instrumentation or reduc-
tion stage. The method that we use to identify patterns or
groups in the “feature space” to achieve the stated goals is
unsupervised classification with t-SNE reduction of spec-
tral information. The main advantage of this approach is
that we are more likely to detect various unfamiliar mor-
phological features as well as the many known and expected
peculiar stars. For a very nice overview of the various clas-
sification and data mining techniques we refer the reader to
Sharma et al.

The paper is organised as follows: The reduction and
overview of Galah data is described in Section 2, the clas-
sification procedure with description of the employed tech-
niques is detailed in Section 3, and the discovered classes
of spectra are examined in Section 4 and 5. In Section 6
we present the structure of the catalogue with final classifi-
cation results including supplementary information, and in
Section 7 we briefly describe a visualisation tool nicknamed
Galah Explorer which displays the t-SNE projection map
featuring various useful functionalities. We conclude with
discussion in Section 8.

2. Data and reduction overview

2.1. Galah spectra

The Galah survey was the main driver for the construction
of Hermes (High Efficiency and Resolution Multi-Element
Spectrograph), a new fiber-fed multi-object spectrometer
on the 3.9 m Anglo-Australian Telescope (AAT). Its spec-
tral resolution is about 28,000, and there is also an R =
45,000 mode using a slit mask. The spectrometer is fed via
400 fibres distributed over π square degrees of sky. Taking
into account the GALAH magnitude limitation (V = 14),
400 stars can be observed simultaneously in that relatively
small angle up to galactic latitude of |b| ∼ 28◦. HERMES
has four simultaneous non-contiguous spectral bands cen-
tred at 4800, 5761, 6610 and 7740 Å (hereafter red, green,
blue, and IR band), covering a total of about 1000 Å, in-
cluding Hα and Hβ lines. The spectrograph is designed to
have ∼ 10% efficiency and to achieve SNR ∼ 100 per reso-
lution element at V = 14 in 1 hour exposure with measured
RV errors < 1 kms−1 (Martell et al., submitted).

2.2. Reduction pipeline

All the spectra subject to our analysis are reduced by the
pipeline used in the Galah survey to produce fully cali-
brated spectra for subsequent stellar atmospheric parame-
ter estimation. The reduction pipeline is based on reliable
Iraf routines and other readily available software. After the
Iraf-based reduction, a code that provides first estimates of
radial velocity and three basic atmospheric parameters is
run and normalization of the entire observed spectrum is
done for each star (see Section 6 in Kos et al. (2016)). For
some spectra, the processing by this code can fail due to
various reasons, and such cases are excluded from further
consideration. Otherwise, the values of the three parame-
ters (Teff , log g, [Fe/H]), to which we refer in the text and
which are color coded in several figures, are produced by
this code.

About 300,000 spectra have accumulated to date, in-
cluding various calibration exposures, however we only con-
centrate on 210,000 spectra recorded before 30th January
2016 and reduced with the Iraf reduction pipeline version
5.1. In the future, the same study will be extended to in-
clude the upcoming spectra once they become available.
For more details, we refer the reader to the thorough de-
scription of the reduction process (Kos et al. 2016). An im-
proved process is also being developed for computation of
stellar parameters using a combination of the spectral syn-
thesis program Spectroscopy Made Easy (SME) (Valenti
& Piskunov 1996; Piskunov & Valenti 2016) and the data-
driven machine learning procedure of The Cannon (Ness
et al. 2015), which is detailed in Martell et al. (submitted).

3. Classification

We devise a custom classification procedure which is based
on two independently developed methods, the novel dimen-
sionality reduction technique t-SNE and renowned cluster-
ing algorithm DBSCAN. Both are used more than once in
an iterative approach to enable the most efficient classi-
fication and overview of our dataset. It should be noted
that these purely mathematical methods are used exten-
sively in various domains of research for unsupervised clas-
sification or clustering, and were not primarily intended for
astrophysical purposes, but nevertheless they have proven
to be very effective in distinguishing different morpholog-
ical groups in spectral data and seem to be far more effi-
cient than any other similar state of the art techniques. We
shortly present both methods and then focus on our custom
classification procedure.

3.1. t-SNE reduction of spectral information

Reduction of accumulated data is an important problem in
many different domains, and deals with data of widely vary-
ing dimensionality. t-SNE (t-distributed Stochastic Neigh-
bour Embedding) can visualize any high-dimensional data
by giving each datapoint a location in a two-dimensional
map. The technique is an improvement of Stochastic Neigh-
bor Embedding (Hinton & Roweis 2002) that is much eas-
ier to optimize, and produces significantly better visualiza-
tions by reducing the tendency to crowd points together
in the center of the map. t-SNE is better than existing
techniques at creating a single map that reveals structure
at many different scales. This is particularly important for
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Fig. 1: SNE gradients (from van der Maaten & Hinton (2008)) as a function of pairwise Euclidean distances (‖xi − xj‖
on horizontal and ‖yi − yj‖ on vertical axes). Positive (red) values of the gradient represent an attraction between the
points in Q space whereas negative values (blue) represent a repulsion.

high-dimensional data that lie on several different, but re-
lated, low-dimensional manifolds, such as SB1 spectra of
multiple spectral types shifted by different radial veloci-
ties. For an illustration of the superior performance of t-
SNE on a wide variety of data sets and comparison with
many other non-parametric visualization techniques, in-
cluding Sammon mapping, Isomap, and Locally Linear Em-
bedding, we refer the reader to the original paper (van der
Maaten & Hinton 2008), while we give a brief introduction
of the technique in the following paragraphs.

t-SNE interprets the overall distances between data-
points in the high-dimensional space as a symmetric joint-
probability distribution P . Likewise a joint-probability dis-
tribution Q is computed, that describes the similarity in
the low-dimensional space. The goal is to achieve a repre-
sentation, referred to as embedding, in the low dimensional
space where Q faithfully represents P . This is achieved by
optimizing the positions in the low-dimensional space to
minimize the cost function C given by the Kullback-Leibler
(KL) divergence between the joint-probability distributions
P and Q:

C(P,Q) = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

(1)

Given two data points xi and xj the probability
pij models the similarity of these points in the high-
dimensional space. To this extent, for each point a Gaussian
kernel, Pi, is chosen whose variance σi is defined according
to the local density in the high-dimensional space and then
pij is described as follows:

pij =
pj|i + pi|j

2N
(2)

where pj|i =
exp(−‖ai − aj‖2/2σ2

i )∑
k 6=i exp(−‖ai − ak‖2/2σ2

i )
(3)

pj|i can be seen as a relative measure of similarity based
on the local neighborhood of a data-point xi. The perplex-
ity value µ is a user-defined parameter that describes the

effective number of neighbours considered for each data-
point. The value of σi is chosen such that for fixed µ and
each i:

µ = 2−
∑N

j pj|i log2 pj|i (4)

In regions of the high-dimensional space with a higher
data density, sigma tends to be smaller than in regions of
the data space with lower density.

A normalized heavy-tailed Student’s t-Distribution ker-
nel with a single degree of freedom is used to compute the
joint-probability distribution in the low-dimensional space
Q, where the positions of the datapoints should be opti-
mized. Given two low-dimensional points yi and yj , the
probability qij that describes their similarity is given by:

qij = ((1 + ‖yi − yj‖2)Z)−1 (5)

with Z =

N∑
k 6=1

N∑
k 6=l

(1 + ‖yk − yl‖2)−1 (6)

The heavy tails of the Student’s t-Distribution allow
dissimilar datapoints xi and xj to be modeled by low-
dimensional counterparts yi and yy that are too far apart.
This is desirable because it creates more space to accurately
model the small pairwise distances, so the local structure
in space Q.

The gradient of the Kullback-Leibler divergence be-
tween P and Q is used to minimize the non-convex cost
function C (see Equation (1)). It indicates the change in
position of the low-dimensional points for each step of the
gradient descent and is given by:

∂C

∂yi

=4

N∑
i=1

(F attr
i − F rep

i ) (7)

=4

N∑
i=1

(

N∑
j 6=i

pijqijZ(yi − yj)−
N∑
j 6=i

q2
ijZ(yi − yj)) (8)
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Fig. 2: The first t-SNE projection of the whole working set containing 209, 533 datapoints (spectra). The three panels
feature Teff , log g, and [Fe/H] values for spectra, measured by the Galah reduction pipeline. The two areas encircled by
black points are the two largest collections of the most appropriate DBSCAN mode (Eps = 0.2, MinPts = 30) for large
scale cluster detection, which were removed in the third step of our classification procedure. The outer borders of the
two collections are dotted, indicating the approximate shape which is not smooth and can be patchy also on the inside.
A relatively smooth distribution of parameters is clearly seen in the enclosed areas. Altogether DBSCAN defines 235
collections in this mode, which are not marked here. All axes are arbitrary.

The gradient descent can be seen as an N-body sim-
ulation, where each data-point exerts an attractive and a
repulsive force on all the other points (F attr

i , F rep
i ). Figure

1 compares gradients for three different variants of SNE
as a function of their pairwise Euclidean distances. The
three panels demonstrate two main advantages of t-SNE
gradient over the other two. First, t-SNE gradient strongly
repels datapoints that are close in space Q but very dis-
similar in space P . The other two also have such repulsion
but its effect is minimal compared to the strong attractions
elsewhere, which we can see by the scale on the vertical
axes. Second, although t-SNE introduces strong repulsions
between dissimilar datapoints that are modelled by small
pairwise distances, these repulsions do not go to infinity as
in the case of UNI-SNE gradient.

In this work, we are dealing with over 200, 000 spectra
which are basically datapoints in space P of dimension-
ality ∼ 13, 600 (all pixels from four spectral bands). The
high computational complexity introduced by employing t-
SNE on our growing dataset requires that we make use of
the Barnes-Hut t-SNE (van der Maaten 2013), an evolution
of the t-SNE algorithm that introduces different approxi-
mations to reduce the computational cost from O(N2) to
O(N log(N)) and the memory complexity from O(N2) to
O(N).

The perplexity is set to 30, a value that has generally
proven to be most effective for our purpose. Smaller values
of this input parameter produce sparser projection maps
with denser collections of points and larger values produce
more evenly covered projection space but with less pro-
nounced separations between distinct groups. To obtain the
low-dimensional embedding of our dataset, the t-SNE pro-

cedure boils down to: (1) converting Euclidean distances in
space P to pairwise similarities (often computationally the
most intensive part), (2) sampling map points randomly
from an isotropic Gaussian with small variance that is cen-
tered around the origin, and (3) initialising the gradient
descent with a fixed number of iterations (usually 1000).

3.2. DBSCAN clustering

Density-based spatial clustering of applications with noise
(DBSCAN) is a data clustering algorithm relying on a
density-based notion of clusters (collections) and designed
to discover any arbitrary shape of collections of points in
some space. It groups together those points that are closely
packed (points with many nearby neighbours), marking as
outliers those that lie alone in low-density regions (whose
nearest neighbours are too far away). DBSCAN is one of
the most common clustering algorithms and also one of the
most cited in scientific literature.

There are two input parameters to DBSCAN method
that have to be set by the user, minPts and Eps.
Furthermore, the points are classified as core points,
(density-)reachable points and outliers. The definitions are
as follows:
– A point p is a core point if at least minPts points are

within distance Eps of it (including p). Those points are
said to be directly reachable from p. By definition, no
points are directly reachable from a non-core point.

– A point q is reachable from p if there is a path p1, ...,
pn with p1 = p and pn = q, where each pi+1 is directly
reachable from pi (all the points on the path must be
core points, with the possible exception of q).
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– All points not reachable from any other point are out-
liers.

To find a collection of points, DBSCAN starts with an
arbitrary point p and retrieves all points density-reachable
from p wrt. Eps and MinPts. If p is a core point, this pro-
cedure yields a collection. If p is a border point, no points
are density-reachable from p and DBSCAN visits the next
point.

In this study, DBSCAN is employed merely as a tool
for automatic detection of distinct collections in the projec-
tion map produced by t-SNE, without any bias apart from
the manual selection of Eps and MinPts. By definition of
the t-SNE projection map, datapoints that are similar to
each other should be closely packed together, thereby, in
DBSCAN’s terminology, forming a collection which can be
detected and labelled.

3.3. Classification procedure

In the process of finding the most productive and feasi-
ble way of classifying Galah spectra, we have established a
procedure which is a combination of automatic and manual
processing and inspection of our data. The current Galah
reduction pipeline includes several stages (see Section 2)
and we only retain those spectra that pass radial velocity
determination and normalisation, which are in our analysis
the two key properties for optimal use of t-SNE dimension-
ality reduction. In principle, we could use the whole dataset
of spectra before any kind of reduction, but in that case the
most important features driving our low-dimensional em-
bedding (projection map) would come from missing wave-
length calibration, flux normalisation, radial velocity de-
termination, etc., in essence we would be concerned with
properties, that are not scientifically intriguing and can be
reliably enough accounted for with standard reduction pro-
cedures. After this selection, the number of spectra left is
209, 533, and we join together the four spectral bands to
produce the so-called datapoints of our working set.

Taking the whole practically usable range of red, green,
blue, and IR band, the number of normalised flux values,
which are basically pixels or original dimensionality of dat-
apoints, amounts to 13, 600 per datapoint (spectrum). At
such high dimensionality multiplied by 209, 533 datapoints,
the computational cost despite the Barnes-Hut implemen-
tation of t-SNE is relatively overwhelming. To ease the
whole process, in terms of memory consumption and com-
putation time, we make use of the following scheme:

1. First t-SNE projection: the first projection is com-
puted for the whole working set (209, 533 spectra). We
use only the following wavelength ranges: 4850 − 4880
Å, 5750 − 5780 Å, 6550 − 6580 Å, and 7730 − 7760 Å.
These ranges are selected so as to include the more in-
teresting and diagnostic parts of each spectral band,
with equal contribution from all of them, amounting
to 2400 as dimensionality of datapoints. The map re-
sulting from this first projection can be used as it is,
for this is the most basic and objective clustering of
all datapoints from our working set. However, a signif-
icant portion of spectral information is missing due to
our cut in wavelength range. There is also a practical
caveat, in that although the projection map is fairly ho-
mogeneously populated, it is also very dense, making the

smaller scale clustering, the one we are most interested
in, more difficult to recognise. The next steps alleviate
these issues.

2. DBSCAN large scale cluster detection: DBSCAN
input parameters are set in a way that a few large col-
lections of datapoints are defined across the projection
map. This is done in order to select those collections
that presumably contain only the “normal” spectra. In
our experience, well behaved spectra are usually clus-
tered together in one or a few large areas of the map
where the atmospheric parameters (Teff , log g, [Fe/H])
are continuously distributed.

3. Select and filter out collections of “normal” spec-
tra: It is here where the manual interaction is most
important, since we are rejecting (to our analysis) less
interesting datapoints and even if being very careful, we
can unwillingly discard some of the desired spectra from
further consideration. The map of the first t-SNE pro-
jection with DBSCAN clustering on large scale is shown
in Figure 2. The two largest collections in orange and red
color, amounting to 137155 datapoints, are rejected for
containing presumably only “normal stars”, and 76938
remaining datapoints are considered in the next steps.

4. Second t-SNE projection: the second projection is
computed for the subsample of the working set (76938
spectra), result of the previous step. The projection map
is shown in Figure 3, and serves as the final basis for our
selection and analysis of peculiar spectra. Some “nor-
mal” spectra are still present in this map, but the largest
portion should belong to all the peculiar objects that we
are interested in. Their small scale structure, which was
hidden in the first t-SNE projection, is now reflected
in the large scale structure, and also more easily dis-
cernible due to the overall fewer datapoints in the map,
as evident from comparing Figures 2 and 3.

5. DBSCAN small scale cluster detection: DBSCAN
input parameters are set in a way that the defined col-
lections correspond to relatively smaller and dense re-
gions in the map which represent distinct morphological
classes of spectra. In our experience, there is not a sin-
gle parameter set for DBSCAN that would allow us to
properly select the various collections, so many sets of
parameters are tried and the corresponding DBSCAN
results (hereafter DBSCAN modes) with different sizes
and shapes of collections are available for inspection in
the next step.

6. Select relevant/categorical collections and as-
sign classification categories/flags: The final step
involves manual overview of individual spectra in dif-
ferent collections with the help of our visualisation tool
presented in Section 7. The goal is to find the best col-
lection from different DBSCAN modes that fully en-
compasses the manually examined spectra belonging to
a distinct classification category. Some outliers in terms
of a chosen category will usually be present, so the final
results should be regarded as a list of candidate mem-
bers of some chosen classification category, where some
will be probable and others possible members, but we
do not make this distinction here as it is out of scope
of this study. Furthermore, the selected collections from
different DBSCAN modes might sometimes overlap, so
one spectrum might be assigned to two categories, in
which case it is labelled as a possible member of both.
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Fig. 3: Same as Figure 2 but for the second t-SNE projection map of the filtered working set containing 76938 datapoints
(spectra), those that are not part of the two large collections marked in Figure 2.

4. Morphological classes of spectra

Table 1 lists 6 distinct classification categories that were
defined using the classification procedure described in Sec-
tion 3.3. This classification is not limited strictly to peculiar
objects having spectra without a counterpart in the library
of synthetic spectra, although they remain the principal
motivation for this work, but is rather a search for any co-
herent group in the projection map, from which anyone can
pinpoint their category of interest. They span from larger
collections of points (spectra) like the Hot stars category to
smaller ones that mostly contain problematic spectra, hav-
ing usually one, albeit very prominent feature (e.g. a strong
emission spike). The projection map that was used to search
for and define the 6 general classification categories is pre-
sented in Figure 3. The overall distribution of parameters
Teff , log g, and [Fe/H] in the three panels indicates their
importance in feature space, where Teff is evidently the
leading one with a gradient over the whole projection map,
followed by [Fe/H] and log g with dominating influence in
the distribution of points inside larger and well separated
collections. The collections that represent distinct classifi-
cation categories are marked in Figure 4, and for some of
them, there is a strong feature present in the spectra, hence
the three main stellar parameters can be well mixed.

For each object from the sample of spectra with assigned
classification category, a search by coordinates inside 1 arc-
sec radius is performed on the SIMBAD database and the
most common SIMBAD Main types are listed along with
SIMBAD Other types in Table 1. In the following para-
graphs, classification categories are described individually,
with several issues related to observations and reduction
joined under category problematic.

4.1. Hot stars

A large collection at the right part of the map in Figure
3 contains mostly early type stars, with temperatures well
above solar, characterised predominantly by widened wings
of Hα and Hβ absorption lines. We observe a smooth tran-
sition of temperatures inside this collection, ranging from
about 6500 up to 8000 K. The distribution of metallicity is
also very smooth, along an axis perpendicular to tempera-
ture, while the surface gravity is more patchy, with dwarfs
more clustered in some parts and giants more dispersed
throughout the collection. A few examples of spectra with
different metallicity and temperatures are shown in Figure
5.

4.2. Cool metal-poor giants

The collection in the bottom part of the projection map
features mostly late type stars with a measured metallicity
well below solar value (−4.5 < [Fe/H] < −0.5, see Figure
6). The distribution of surface gravity is clearly seen, with
a majority of stars being giants, and having temperatures
mostly in the range from 4000 K to a little above solar
temperature. The available records from SIMBAD support
these claims, with 99 stars classified as Red Giant Branch
star, 15 as Possible Red Giant Branch star, and 10 as Vari-
able Star of RR Lyr type.

4.3. Stars with molecular absorption bands

The upper left part of the map in Figure 3 contains a region
of the projection space that is populated by spectra with
strong molecular absorption bands. It is well isolated on
one end but still connected to the rest of the late type stars
on the other end. The measured temperatures in this col-
lection are mostly expectedly low, but not unquestionable,
as is nicely demonstrated by the very tip of this area on
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Fig. 4: The result of the classification procedure, based on the projection map in Figure 3. Collections of distinct types
(categories) of spectra are flagged. All axis are arbitrary.

the left side, where we find the strongest absorption bands,
while the temperatures derived for some of these spectra are
much too high (above 6500 K). The progression of intensity
of absorption bands nicely follows the direction from this
extreme end to the larger region of late type spectra (from
top to bottom on panels in Figure 7). The surface gravities
and metallicities in this whole collection are also not to be
trusted fully, due to the well known problem of producing
reliable synthetic templates for such stars.

4.4. Binary stars

Multiple stars of which the majority represents SB2 sys-
tems are found in the bottom right part of the projection
map, clustered in two well separated collections. The main
and most obvious difference between them is the position of
the stronger of the two components in terms of the equiva-
lent width of absorption lines. For the collection below, the
stronger component is positioned blueward and for the one
above redward. Although the distinction is physically al-
most irrelevant, it is evidently morphologically important.
Following the arc-like shape of the two collections from left
to right, the spectra show progressively larger separation
of the two components, from almost blended double lines
to those separated by as much as 150 km/s (from bottom
to top in Figure 8, the topmost spectrum belonging to a
W Uma star). We have direct and indirect indications of
binarity in Table 1, although only for a handful of stars,

the other candidates being currently unknown for their bi-
nary nature according to the SIMBAD database. The same
search by coordinates as performed on SIMBAD reveals 6
systems in Pourbaix et al. (2004) and 8 systems in Mason
et al. (2001) catalogues. By visual inspection, some SB3
candidates and W UMa type SB2s are also a part of this
collection, although they are not isolated enough in the pro-
jection map to be labelled separately.

The binary fraction in this collection represents around
1% of the investigated Galah spectra. However the true
number of such objects is doubtlessly larger, as there are
many factors hindering their detection: SB2 suffering from
line blending, exclusion of potential candidates in the third
step of our classification procedure or blocking of their de-
tection by some more prominent problematic feature. The
simulation from Matijevič et al. (2010) performed for SB2
analysis of RAVE spectra found that the detection rate
should be fairly high (∼ 80%) for systems with orbital
periods shorter than ≈ 100 days. The limiting line sepa-
ration 4vorb ≈ 50 kms−1 for RAVE (near-IR, SNR ∼ 45,
R ∼ 7500) should decrease for Galah due to the higher res-
olution and signal-to-noise ratio of spectra and so greatly
improve the detection of longer period systems. Indeed, the
smallest separations among the detected binaries in this
collection are 4vorb ≈ 15 kms−1.
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Fig. 5: Examples of hot stars category. Vertical spacing between spectra in each panel is adjusted for clarity. From bottom
to top in each panel, spectra are identified by J2000 coordinates with APASS V magnitude as listed in Table 2.
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Fig. 6: Same as Figure 5 but for cool metal-poor giants.
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Fig. 7: Same as Figure 5 but for molecular absorption bands.
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Fig. 8: Same as Figure 5 but for binary stars.
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4.5. Hα/Hβ emission

Emission-type stars often feature diverse emission profiles
in Hα and Hβ lines, indicative of young stars, cataclysmic
variables, symbiotic stars, stars with massive outflows or
inflows, and to many other types of active objects. The
shapes of emission profiles can be described by meaning-
ful morphological and possibly also physical categories, as
demonstrated by (Traven et al. 2015). In this collection,
the diverse profiles (double peaks, emission superimposed
on absorption, P-Cygni, and others) are presented together,
as they are relatively few and also not cleanly separated in
the projection map. The Hα emission line is mostly present
and often accompanied by a similar profile shape of Hβ line.
In some cases, molecular absorption bands and the lithium
absorption line are clearly visible, all together indicative of
cooler, younger and active stars, supported also by SIM-
BAD classes in Table 1. Some examples of spectra in this
category are displayed in Figure 9.

4.6. Problematic

This collection is very diverse as it assembles together spec-
tra which were in some peculiar and generally unwanted
way affected in either of the stages from observations to
reduction. Emission spikes (6768 spectra) are most often
present in IR band and sometimes, but less pronounced, in
the red band. The left and right part of the map, shaped
by low density snake-like collections, represent spectra with
one strong emission spike (12161) in IR band. A reduction
issue in the form of an oscillating continuum (2914) in the
red band is also very numerous. The negative flux (2192)
is most often present in the IR band, followed by the blue
band and less often in the red band. There is one more quite
interesting but less frequent reduction effect in the IR band,
in the form of very low continuum (54) which is either at
∼ 0.3 or close to and below zero level, often accompanied
by strong oscillating features. The described subcategories
follow each other in Figure 10 from top to bottom in each
panel, with the zero level spectrum in IR band overlap-
ping the previous one in the bottom panel (flux level 6). A
larger part of spectra in this category is in all aspects well
behaved apart from the described issues, and their auto-
matic detection without eye inspection is very helpful for
the iterative development and improvement of our reduc-
tion pipeline (Kos et al. 2016).

5. Specific search for young/active stars

We present additional classification results based on a more
specific projection map, in contrast to the general one pre-
sented in Section 4. These results follow the exact same
procedure as explained in Section 3.3, but with differ-
ent t-SNE input parameters and input spectral ranges.
The motivation for this classification channel is the search
for stars in their early phases of evolution (Žerjal et al.
2013) for which features in Hα, Hβ, and 7Li spectral lines
can be diagnostic of their activity (Soderblom 2010; Jef-
fries 2014). Perplexity is set to 50 and the spectral ranges
4841 − 4881 Å (Hβ) and 6543 − 6583 Å (Hα) are selected
for the first t-SNE projection of the whole working set,
while perplexity of 15 and only narrow spectral ranges
(4859− 4863, 6561− 6565, 6706− 6710 Å) around the three
diagnostic lines are selected for the second t-SNE projection

of the filtered working set. Other variations of perplexity
and spectral ranges were tried, but this one produced the
most useful projection map.

Compared to the general classification from the previous
section, we find additional candidates in categories of binary
stars (649), problematic spectra with oscillating continuum
(1034), and Hα/Hβ emission (1083). With this projection
map, we are able to partition the latter category and iden-
tify four distinct morphological subtypes (see Figures 11
and 12): Hα/Hβ emission, Hα/Hβ emission superimposed
on absorption, Hα/Hβ P-cygni, and Hα/Hβ inverted P-
cygni, all indicative of diverse underlying physical processes
(Traven et al. (2015) and references therein). The Hα/Hβ
emission category is a counterpart to the one presented in
the previous section, and contains diverse multicomponent
profiles of Hα/Hβ emission lines, that were not cleanly sep-
arated in the projection map, as in the case of the latter
three categories. It is possible that some of the emission
profiles are a consequence of reduction issues instead of in-
trinsic properties of stars and their environment, but such
an evaluation is out of scope of the current work, and will
be addressed in future classification studies.
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Fig. 11: Same as Figure 5 but based on results from the
specific search for young/active stars. Examples for Hα/Hβ
emission category are displayed.
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Fig. 9: Same as Figure 5 but for Hα/Hβ emission.
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Fig. 10: Same as Figure 5 but for problematic spectra. Subcategories of spectra in the panels from bottom to top:
emission spikes, strong emission spike, oscillating continuum, oscillating continuum, negative flux, low continuum, and
low continuum.
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Table 1: Classification categories based on the general projection map (see Section 4). The columns give the classification
category, number of classified spectra, and most common SIMBAD main types and other types. SIMBAD defines a main
type for each astronomical object in its database, and several other types generally inferred from its identifiers. For the
last two columns, only first five most common types are listed here, excluding the less interesting type Star. Full table is
available in electronic version.

Category N Main type Other types

Hot stars 5101

Star in Cluster (34), Variable Star of delta
Sct type (18), Variable Star of RR Lyr type
(12), Variable Star (11), Eclipsing binary of
Algol type (detached) (10)

Infra-Red source (1913), Star in Cluster
(52), Variable Star (47), Double or multi-
ple star (26), Variable Star of delta Sct type
(24)

Cool metal-poor giants 3532

Star in Cluster (202), Red Giant Branch
star (99), High proper-motion Star (16),
Possible Red Giant Branch star (15), Vari-
able Star of RR Lyr type (10)

Infra-Red source (548), Star in Cluster
(384), Red Giant Branch star (109), Pos-
sible Red Giant Branch star (52), High
proper-motion Star (19)

Molecular abs. bands 1728
Star in Cluster (5), Variable Star (4),
Semi-regular pulsating Star (3), Red Giant
Branch star (1), S Star (1)

Infra-Red source (636), Variable Star (10),
Star in Cluster (6), Semi-regular pulsating
Star (3), Possible Red supergiant star (2)

Binary stars 2229

Star in Cluster (10), Spectroscopic binary
(4), Eclipsing binary of Algol type (de-
tached) (2), Double or multiple star (2),
Eclipsing binary (2)

Infra-Red source (325), Star in Cluster
(16), Double or multiple star (12), Spec-
troscopic binary (8), Rotationally variable
Star (5)

Hα/Hβ emission 348

High proper-motion Star (10), Pre-main se-
quence Star (8), Rotationally variable Star
(7), T Tau-type Star (7), Star in Cluster
(4)

Infra-Red source (69), X-ray source (27),
High proper-motion Star (21), Pre-main se-
quence Star (20), Variable Star (16)

Problematic1 26251

Star in Cluster (345), Red Giant Branch
star (34), High proper-motion Star (19),
Variable Star of RR Lyr type (10), Vari-
able Star (8)

Infra-Red source (1953), Star in Cluster
(405), Red Giant Branch star (40), High
proper-motion Star (23), Variable Star (23)

A new category lithium absorption is defined to account
for spectra which display different equivalent widths of the
7Li line, from weak to very strong absorptions, as displayed
in Figure 13. Significant 7Li absorption sometimes accom-
panies spectra in Hα/Hβ emission categories from the pre-
vious paragraph, as evident from Figure 11.

The classification categories presented in this section are
listed in Table 3, along with SIMBAD classes which indicate
the connection between youth and activity of stars and the
observed Hα/Hβ multicomponent profiles and prominent
lithium absorption.

6. Catalogue

The final classification results are gathered in the catalogue,
whose contents are described in Table 4. For all 41605 spec-
tra assigned with at least one classification category from
either Section 4 or 5, we give the coordinates of corre-
sponding targets, their APASS (Henden et al. 2012; Munari
et al. 2014) V magnitude, classification category, and sup-
plementary information from SIMBAD, VizieR, and ADS
databases.

As the coordinates of stars are the most reliable search
parameters, we used them to retrieve information from
SIMBAD, VizieR, and ADS on-line databases. Epoch
2000.0 coordinates of our targets are not identical with
those from the catalogues, so we adopt a search radius of 1
arcsec where applicable. The results of the search in VizieR
catalogues are retrieved based on the following wavelength
ranges: Gamma-ray, X-ray, EUV, UV, Optical, IR, and Ra-
dio. In the catalogue, we list the number of VizieR ta-

bles in which a match is found. References from the litera-
ture (ADS) should serve as possible additional information
about objects of interest, they are not to be taken as reliable
sources of the characteristics of a certain object.

Some of the 38633 stars (with 41605 spectra) in our
catalogue are known to be of peculiar type and are already
discussed in the literature or listed in different sources. SIM-
BAD yields a match for 5998 targets, VizieR expectedly
finds at least one match in at least one of its catalogues
for practically all unique targets (38632) while 1639 tar-
gets are matched successfully with references from the ADS
database.

The electronic version of the catalogue will be made
publicly available at the CDS.

7. Visualisation - t-SNE Explorer

The t-SNE or Galah Explorer is an interactive web applica-
tion, visualising the “feature” based distribution of spectra
in the t-SNE projection map. The basic view contains:

t-SNE map in the central part such as those in Figures 2
and 3. The map is split into hexagons which are color
coded based on average values of parameters of con-
tained datapoints.

Large hexagonal frame displaying datapoints of a se-
lected hexagon from the map, where each datapoint is
color coded depending on the selection of available nu-
merical or descriptive (e.g. classification) parameters.

1 A large fraction of such spectra are recoverable (see text).
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Table 3: Same as Table 1 but for the specific projection map produced in the search for young/active stars (see Section
5). Categories binary stars, Hα/Hβ emission, and problematic are already defined in Section 4, while the other four are
uniquely described in Section 5.

Category N Main type Other types

Binary stars 1730

Star in Cluster (11), Variable Star of
RR Lyr type (4), Eclipsing binary of
Algol type (detached) (3), Spectro-
scopic binary (2), Rotationally vari-
able Star (1)

Infra-Red source (244), Star in Cluster
(16), Variable Star (9), Spectroscopic
binary (7), Double or multiple star (6)

Hα/Hβ emission 212

Pre-main sequence Star (5), Rotation-
ally variable Star (3), High proper-
motion Star (3), Flare Star (3), Star
in Cluster (2)

Infra-Red source (40), X-ray source
(20), Pre-main sequence Star (9), High
proper-motion Star (8), Variable Star
(8)

Hα/Hβ emission superimposed
on absorption

549 Star in Cluster (5) Infra-Red source (8), Star in Cluster
(5)

Hα/Hβ P-cygni 85 Variable Star (1) Infra-Red source (3), Variable Star
(1), Rotationally variable Star (1)

Hα/Hβ inverted P-cygni 412 Infra-Red source (1)

Lithium absorption 414

Rotationally variable Star (9), T Tau-
type Star (9), Pre-main sequence Star
(7), Variable of BY Dra type (5), Vari-
able of RS CVn type (2)

Infra-Red source (130), X-ray source
(32), Variable Star (25), Pre-main se-
quence Star (22), T Tau-type Star
(20)

Problematic 2767
Star in Cluster (109), Possible Red Gi-
ant Branch star (1), Spectroscopic bi-
nary (1), High proper-motion Star (1)

Infra-Red source (346), Star in Clus-
ter (115), Double or multiple star (6),
X-ray source (2), Spectroscopic binary
(2)

Table 4: Description of the content for the catalogue with 41605 entries (spectra) whose full table will be available at the
CDS.

Label Unit Description
DATEOBS Date and time of the observation
RA ◦ RA (J2000)
DEC ◦ DEC (J2000)
Class_cat_general General classification category as given in Section 4
Class_cat_specific Specific classification category as given in Section 5
SIMBAD_main_id Main ID of the source in SIMBAD
SIMBAD_angular_distance arcsec Angular distance of Galah target to the source in SIMBAD
SIMBAD_main_type SIMBAD main type
SIMBAD_other_types SIMBAD other types

VizieR_n_Radio Number of VizieR tables for Radio wavelength range in which Galah target
has a match

VizieR_n_IR As VizieR_n_Radio but for IR wavelength range
VizieR_n_optical As VizieR_n_Radio but for optical wavelength range
VizieR_n_UV As VizieR_n_Radio but for UV wavelength range
VizieR_n_EUV As VizieR_n_Radio but for EUV wavelength range
VizieR_n_Xray As VizieR_n_Radio but for X-ray wavelength range
VizieR_n_Gammaray As VizieR_n_Radio but for Gamma-ray wavelength range
ADS_literature A comma-separated list of articles (title and bibcode)

List of parameters which can be chosen along with indi-
vidual values for all of them displayed for the currently
selected datapoint. Any supplementary information on
the corresponding object (star) can also be displayed
together with a link to Simbad and Vizier matches.

Plotting area with four panels corresponding to four
Galah spectral bands, where the median and the dis-
persion of normalised fluxes of all spectra of the cur-
rently selected hexagon is displayed, over-plotted with
the currently selected datapoint (spectrum).
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Fig. 12: Same as Figure 11 but for Hα/Hβ emission su-
perimposed on absorption, Hα/Hβ inverted P-cygni, and
Hα/Hβ P-cygni categories. From bottom to top in panels,
each category features 5 examples of spectra.

Search fields where the user can search by Galah identi-
fier or other parameter value or label which is available
in the Galah database of reduced spectra, whereby im-
mediately selecting and displaying the matching object.

The presented segments of the Galah Explorer enable
the user to locate specific areas of interest in the map, fea-
turing characteristic values of parameters. One can also go
the other way by looking for a specific object using e.g.
its unique identifier, and once selected inspecting its mor-
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Fig. 13: Same as Figure 11 but for lithium absorption.

phological vicinity (parent hexagon) with its neighbouring
spectra, using statistical plots to evaluate their similarity.

The (briefly) described functionality offers a very power-
ful and useful way of overviewing any kind of a dataset, lo-
cating and exploring its inherent structure in feature space
and detecting all kinds of outliers. Many different projection
maps can be incorporated into the Galah Explorer together
with different DBSCAN modes for an efficient selection and
identification of distinct morphological collections of spec-
tra. The tool is currently available on the Galah official
website at http://galah-survey.org.
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8. Discussion

We have demonstrated that t-SNE can be used as an ef-
ficient tool for discovery of diverse spectral features and
classification of stellar spectra. By projecting the Galah
dataset onto a two dimensional space it is able to preserve
and visually reveal its complex morphological structure. Al-
though not tested on our sample of spectra, it was shown by
van der Maaten & Hinton (2008) that t-SNE is far superior
in its domain, putting emphasis on (1) modeling dissim-
ilar datapoints by means of large pairwise distances, and
(2) modeling similar datapoints by means of small pairwise
distances, which is not obvious for other non-linear dimen-
sionality reduction techniques and even less so for the linear
ones.

The complexity of spectral morphologies in principle in-
creases with increasing wavelength range, therefore Galah
with its four spectral bands in this respect surpasses
many other spectroscopic surveys. Consequently, the task
of classification is more difficult because spectral features
can appear differently and from different effects in each
band (wavelength-dependent markers of physical processes,
reduction issues, hardware malfunction, different optical
paths, etc.).

Our classification procedure can accept any arbitrary
spectral ranges selected by the user, which (1) enables us
to put emphasis on particular physics we are interested
in, and (2) removes the possibly unwanted influence from
strong features in other parts of the spectrum, which can
impede classification of the desired types of objects. Both
points were demonstrated with the specific projection in
Section 5, selecting only narrow regions of Hα, Hβ, and
7Li for the search of young, active stars. Many detections
of such objects were not possible with the first projection
as the full spectral information along with strong problem-
atic features in the e.g. IR band clouded those in other
bands. For the same reason, we might be missing some in-
teresting morphological categories with weaker characteris-
tic features hidden by stronger ones. Therefore, the classi-
fication presented here is not absolutely representative of
the whole dataset, however, the most prominent features
are recognised, amounting to 10 distinct classification cate-
gories listed in Tables 1 and 3, containing altogether 41605
spectra (38633 unique targets). The specific projection map
yielded new candidates for three already defined categories
from the general map, while also providing four new cat-
egories, validating the principle that one can try different
t-SNE set-ups to select the best (or several) projection maps
for classification purposes.

Using more than one projection map, possibly produced
by different input selected spectral regions, or simply using
different DBSCAN modes, it can happen that the same
spectrum is assigned to more than one classification cat-
egory, due to the previously discussed reasons. Additional
factor contributing to such cases are morphologically simi-
lar features like double lines from binary stars or emission
superimposed on absorption, which might be located close
in the projection space, with a possible overlap region. Spec-
tra with more than one classification category can be easily
identified in the catalogue (Table 4), having both classifi-
cation fields (general as well as specific) non-empty.

The novel dimensionality reduction technique t-SNE is
capable of representing astronomical spectra in a low di-
mension space where their morphology and hidden features

can be efficiently discovered and studied. This was shown
with a very effective classification of the largest astronomi-
cal high-resoluton spectroscopic dataset so far, comprising
209, 533 spectra where each one contains 13, 600 values of
flux. All data products along with the t-SNE Explorer will
be publicly available in the coming data releases. The source
code of the employed methods is freely available on-line,
and our custom procedure for classification can be readily
adjusted and applied to different spectroscopic or other as-
tronomical datasets. The knowledge and experiences gained
in this work will facilitate further investigation and under-
standing of the Galah dataset with newly arrived spectra
and enable focused studies of distinct categories of objects
(e.g. binary stars).

Although this work has made use of the external
sources, it does not depend on them and they serve mostly
to support this proof of concept for classification of a wide
variety of astronomical data.
Acknowledgements. This research has made use of the SIMBAD
database (Wenger et al. 2000) and of the VizieR catalogue access
tool operated at CDS, Strasbourg, France. The original description of
the VizieR service was published in A&AS 143, 23.
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Table 2: List of spectra plotted in Figures 5−13 representing
distinct classification categories. The columns give coordi-
nates, APASS V magnitude where available, figure number,
and sequential spectrum number (bottom to top) in panels
for each figure.

RA (J2000) DEC (J2000) V N fig. N spec.
12h 40m 59.46s -45◦ 27′ 14.1′′ 12.2 5 1
10h 59m 01.3s -47◦ 34′ 19.9′′ 5 2
12h 59m 40.48s -45◦ 53′ 04.4′′ 5 3
09h 00m 57.77s -27◦ 09′ 39.8′′ 5 4
21h 03m 00.31s -49◦ 26′ 34.6′′ 6 1
21h 40m 02.12s -23◦ 13′ 00.2′′ 13.0 6 2
01h 29m 21.27s +06◦ 47′ 25.4′′ 10.9 6 3
19h 22m 58.05s -22◦ 54′ 40.2′′ 10.1 7 1
16h 52m 28s -24◦ 21′ 45.4′′ 10.5 7 2
16h 13m 22.82s -17◦ 29′ 54.7′′ 11.9 7 3
13h 23m 49.52s -49◦ 14′ 21.1′′ 7 4
09h 43m 55.26s -76◦ 28′ 55.5′′ 13.4 8 1
18h 39m 12.45s -53◦ 58′ 07.6′′ 13.3 8 2
06h 13m 09.26s -54◦ 49′ 54.4′′ 12.6 8 3
11h 34m 04.8s -39◦ 17′ 39.5′′ 12.7 8 4
06h 30m 58.37s -31◦ 49′ 29.7′′ 13.6 8 5
14h 05m 59.68s -45◦ 18′ 20.7′′ 8 6
16h 13m 29.29s -23◦ 11′ 07.6′′ 11.7 9 1
02h 04m 32.8s -74◦ 55′ 28.6′′ 13.2 9 2
12h 20m 52.77s -49◦ 11′ 05.7′′ 9 3
12h 43m 04.53s -49◦ 31′ 11′′ 13.1 9 4
16h 01m 22.34s -19◦ 37′ 22.3′′ 14.5 9 5
07h 41m 05.11s -55◦ 26′ 32.54′′ 13.8 10 1
19h 42m 39.47s -45◦ 08′ 14.4′′ 13.9 10 2
09h 56m 53.13s -70◦ 57′ 57.8′′ 10 3
22h 20m 59.59s -08◦ 59′ 13.3′′ 10 4
16h 01m 54s -22◦ 12′ 18.9′′ 14.3 10 5
12h 41m 51.89s -36◦ 50′ 37.3′′ 10 6
18h 23m 16.32s -34◦ 01′ 27.5′′ 10 7
07h 37m 19.419s -55◦ 31′ 44.49′′ 14.5 11 1
20h 57m 51.85s -33◦ 52′ 38.4′′ 13.8 11 2
20h 08m 37.69s -41◦ 26′ 45.8′′ 11 3
11h 14m 59.85s -33◦ 22′ 27.8′′ 13.7 11 4
16h 09m 39.7s -22◦ 00′ 46.6′′ 14.0 11 5
13h 04m 09s -44◦ 49′ 18.7′′ 14.2 11 6
16h 03m 46.95s -22◦ 45′ 24.8′′ 14.0 11 7
21h 28m 30.21s -40◦ 14′ 30.5′′ 13.9 12 1
07h 50m 47.825s -58◦ 43′ 17.31′′ 13.9 12 2
07h 45m 32.447s -58◦ 50′ 26.46′′ 12 3
07h 35m 59.296s -55◦ 03′ 09.68′′ 14.0 12 4
16h 29m 41.31s -27◦ 27′ 27.4′′ 14.6 12 5
07h 33m 39.016s -55◦ 34′ 54.83′′ 14.7 12 6
07h 41m 48.343s -55◦ 24′ 54.13′′ 12 7
16h 27m 09.9s -28◦ 21′ 58′′ 12 8
16h 28m 43.44s -28◦ 20′ 24.1′′ 14.5 12 9
07h 42m 50.476s -55◦ 26′ 22.95′′ 14.9 12 10
15h 59m 08.89s -26◦ 03′ 19.6′′ 13.5 12 11
16h 09m 09.88s -22◦ 10′ 13.2′′ 13.9 12 12
16h 27m 50.82s -28◦ 58′ 28.8′′ 12 13
16h 28m 30.01s -27◦ 16′ 57.8′′ 15.3 12 14
16h 28m 51.24s -27◦ 53′ 15.8′′ 14.6 12 15
03h 44m 03.539s +24◦ 30′ 15.14′′ 10.9 13 1
16h 16m 03.04s -28◦ 02′ 46.4′′ 11.2 13 2
06h 22m 39.33s -55◦ 07′ 13.1′′ 13.2 13 3
15h 38m 51.73s -39◦ 54′ 46.3′′ 13.5 13 4
12h 09m 56.1s -30◦ 50′ 05.8′′ 13.0 13 5
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