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ABSTRACT
We present a neural network autoencoder structure that is able to extract essential
latent spectral features from observed spectra and then reconstruct a spectrum from
those features. Because of the training with a set of unpeculiar spectra, the network is
able to reproduce a spectrum of high signal-to-noise ratio that does not show any spec-
tral peculiarities even if they are present in an observed spectrum. Spectra generated in
this manner were used to identify various emission features among spectra acquired by
multiple surveys using the HERMES spectrograph at the Anglo-Australian telescope.
Emission features were identified by a direct comparison of the observed and generated
spectra. Using the described comparison procedure, we discovered 10, 364 candidate
spectra with a varying degree of Hα/Hβ emission component produced by different
physical mechanisms. A fraction of those spectra belongs to the repeated observation
that shows temporal variability in their emission profile. Among emission spectra, we
find objects that feature contributions of a nearby rarefied gas (identified through
the emission of [NII] and [SII] lines) that was identified in 4004 spectra, which were
not all identified as having Hα emission. Positions of identified emission-line objects
coincide with multiple known regions that harbour young stars. Similarly, detected
nebular emission spectra coincide with visually-prominent nebular clouds observable
in the red all-sky photographic composites.

Key words: methods: data analysis – stars: peculiar – stars: activity – stars: emission-
line – line: profiles – catalogues

1 INTRODUCTION

The identification of peculiar stars, whose spectra contain
emission lines, is of interest to a wide field of stellar re-
search. Spectral complexity of such stars brings insight into

? Contact e-mail: klemen.cotar@fmf.uni-lj.si

the ongoing physical processes on and around the star. Emis-
sion features in stellar spectra might adversely impact the
quality of stellar parameters and abundances determined by
automatic data analysis pipelines that are configured to pro-
duce the best results for most common stellar types. Exam-
ples of how these features might compromise spectroscopic
measurements when we assume that a star is not peculiar
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include the determination of effective temperature (Cayrel
et al. 2011; Amarsi et al. 2018; Giribaldi et al. 2019), com-
putation of stellar mass (Ness et al. 2016; Bergemann et al.
2016), and the effects of self broadening on line wing for-
mation (Barklem et al. 2000; Allard et al. 2008). Highly
accurate measurement of the hydrogen absorption profiles
are needed in those cases. Any deviations in the line shapes
from model predictions would produce misleading results.
We would therefore like to know if the investigated line is
modified by additional, unmodelled physical process or spec-
tral reduction process. Stars with evident emission lines
populate a wide variety of regions on the HR diagram. Be-
cause of possible overlaps between different stellar types, de-
tailed photometric (especially in the infrared region where
warm circumstellar dust disc can be identified) and spec-
troscopic observations are needed for an accurate physical
explanation of the observed features. An examples of such
work is presented in Munari et al. (2019), who performed
detailed a multi-band photometric study of an emission-line
star, originally discovered on objective prism plates. The de-
tailed photometric time-series study described in that work,
together with observations of the star’s infrared excess, led
to the star VES 263 being identified as a massive pre-main-
sequence star and not a semi-regular AGB cool giant as clas-
sified previously. In a similar way, Lancaster et al. (2020)
performed an analysis of the stellar object V* CN Cha,
which had previously been identified as an emission star.
By studying a long photometric time-series of the star, they
concluded that the object was most likely a symbiotic binary
star system whose emission was lined to a long-duration,
low-luminosity nova phase.

Numerous different physical processes that can con-
tribute to the complex shapes of the Hα emission profile
are given by Reipurth et al. (1996); Jones et al. (2011); Silaj
et al. (2014); Ignace et al. (2018), who compare observations
with expected physical models. Following the classification
scheme introduced by Kogure & Leung (2007), emission-line
stars are predominately observed in close binaries, earliest-
type, latest-type, and pre-main sequence stars. For systems
in which mass accretion is occurring, the examination of
emission lines can allow the mass accretion rate onto the
central star to be estimated (White & Basri 2003; Natta
et al. 2004). The procedure involves measuring simple in-
dices (such as the equivalent width and broadening velocity)
of the emission lines in the stars’s spectrum.

In recent years, multiple dedicated photometric and
spectroscopic surveys (e.g. Witham et al. 2008; Mathew
et al. 2008; Matijevič et al. 2012; Nakano et al. 2012; Drew
et al. 2014; Aret et al. 2016; Nikoghosyan et al. 2016),
and exploratory spectral classifications of large unbiased all-
sky spectroscopic observational datasets (e.g. Kohoutek &
Wehmeyer 1999; Reid & Parker 2012; Traven et al. 2015;
Nikoghosyan et al. 2016; Hou et al. 2016; Traven et al. 2017)
have been performed, each finding from hundreds to tens of
thousands of interesting emission-line stars. Some of these
surveys provide a basic physical classification in addition to
an emission detection. Therefore they can be used as source
lists for further in-depth studies of individual stars.

If a star is engulfed in a hot rarefied interstellar medium
or stellar envelope, emission features of the forbidden lines
(the most commonly studied of which are the [NII] and [SII]
lines) could be observed in its spectrum, providing an in-

sight into the temperature, density, intrinsic movement, and
structure of its surrounding interstellar environment (Bo-
huski 1973; Raju et al. 1993; Escalante & Morisset 2005;
Damiani et al. 2016, 2017).

Focusing on spectroscopic data, procedures for the de-
tection of emission lines can roughly be separated into
two categories. Simpler procedures searching for obvious
emitters above the global continuum (Traven et al. 2015;
Nikoghosyan et al. 2016; Hou et al. 2016; Nikoghosyan et al.
2016) and more complex procedures, where the observed
spectrum is compared to an expected stellar spectrum of
a normal star (Žerjal et al. 2013). The reference spectra in
the latter case can be generated using exact physics-based
stellar modelling or data-driven approaches. Of these, the
data-driven approaches can be separated into supervised and
unsupervised generative models, where, for the later, it is not
required to provide an estimate of the stellar parameters for
a given spectrum in advance. To predict a reliable model us-
ing supervised models, we must determine the correct stellar
labels of an emission star in advance. This can pose a seri-
ous limitation if the strongest lines in the acquired spectrum
can be populated by an emission feature, which happens for
Gaia and RAVE spectra (Žerjal et al. 2013). In light of the
future publication of Gaia RVS spectra as part of Gaia DR3
for hundreds of million of stars, it is thus important to de-
velop tools to identify emission-line stars, as we aim to do
in this study via GALAH spectra.

The paper is structured in the following order. We begin
with the description of the used spectroscopic data in Section
2. In Section 3 we explain our analysis pipeline whose main
components are the generation of reference spectra (Section
3.1) and identification of multiple emission features (Sections
3.3 and 3.4). The temporal variability of detected emissions
is analysed in Section 4. The results are discussed and sum-
marised and discussed in Section 5.

2 DATA

The spectroscopic data used in this study was taken from the
main GALactic Archaeology with HERMES (GALAH) sur-
vey (De Silva et al. 2015), the K2-HERMES survey (Witten-
myer et al. 2018), the TESS-HERMES survey (Sharma et al.
2018), and the dedicated HERMES open clusters survey (De
Silva et al. in preparation) and the HERMES Orion star
forming region (Kos et al. in preparation) survey. All of the
spectra were acquired by the High Efficiency and Resolution
Multi-Element Spectrograph (HERMES, Barden et al. 2010;
Sheinis et al. 2015), a multi-fibre spectrograph mounted on
the 3.9-metre Anglo-Australian Telescope (AAT) at the Sid-
ing Spring Observatory, Australia. The spectrograph has a
resolving power of R ∼ 28, 000 across four wavelength ranges
(4713 – 4903 Å, 5648 – 5873 Å, 6478 – 6737 Å, and 7585 –
7887 Å), also referred to as blue, green, red, and infrared
spectral arms. Of the four, we use only the first (blue) and
the third (red) in our study, as they cover the wavelength re-
gions where interesting Balmer and forbidden emission lines
can be seen and detected.

The combined dataset consist of 669, 845 successfully re-
duced stellar spectra, of which a small fraction are repeated
observations. All acquired spectra were homogeneously re-
duced to one dimensional spectra, continuum normalised,
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Figure 1. Visual representation of an encoder part of the used
autoencoder structure for the red spectral arm. After the input

spectra are encoded, they are passed through the same inverted

architecture to produce modeled low-noise spectra. The value in
the right most column indicates a number of input and output

connections to neighboring layers. The number of nodes in a layer
is equal to the output value. The input spectrum length is given
as the number of wavelength bins in a spectrum.

and shifted to the stellar reference frame (a detailed de-
scription of the algorithm used can be found in Kos et al.
2017). All surveys combined include more spectra than the
main GALAH survey alone, but at the same time break
the simple rule, adhered to in that main survey, of a sim-
ple magnitude limited selection function (Sharma et al. in
preparation) that is desired for population studies and com-
parison with synthetic galactic models. The exact selection
function is not important in our case as we are not perform-
ing any population studies, but are only trying to find as
many emission-line objects as possible.

The stellar atmospheric parameters and individual
abundances derived from our normalised spectra were anal-
ysed with the same adaptation of the Spectroscopy Made
Easy (SME, Valenti & Piskunov 1996; Piskunov & Valenti
2017) software that is described in-depth by Buder et al.
(in preparation) as part of the latest GALAH data release
(DR3) that includes fully reduced spectra and derived pa-
rameters.

Our algorithm for the detection of emission-line spec-
tra, described in detail below, uses the normalised GALAH

0 50 100 150 200 250 300 350
Training epoch

1.5

2.0

2.5

3.0

M
ea

n 
ab

so
lu

te
 p

re
di

ct
io

n 
er

ro
r 

1e 2
Training (blue arm)
Validation (blue arm)
Training (red arm)
Validation (red arm)

Figure 2. Prediction accuracy of the blue and red arm autoen-
coders at different training epochs. The prediction error is com-

puted as a sum of all absolute differences between the input and

output data set (see Equation 2). Shown are training (solid line)
and validation curves (dashed line) which do not show any strong

model over-fitting on the training set. The curves indicate that

both autoencoders learned in a similar way because the same op-
timiser was used. The blue arm model has a bit higher loss and

shows slower learning because of a greater spectral complexity

and lower signal to noise ratio in that wavelength region.

spectra that were already corrected for telluric absorptions
and had sky spectral emission contributions removed. The
correct sky removal (described in more detail in Section 3.5)
is essential as one of the telluric lines falls inside the range
of the Hα line.

3 DETECTION AND CHARACTERIZATION

The first attempts to discover Hα/Hβ emission spectra
in GALAH survey observations were performed by Traven
et al. (2017), who use the unsupervised dimensionality re-
duction technique t-SNE (van der Maaten 2013) to group
morphologically similar spectra. As the amplitude and shape
of the observed emission can vary substantially depending
on the astrophysical source, Traven et al. (2017) presumably
detected only a portion of the strongest emitters. One of the
reasons for this is the manual classification of data clumps
determined by the clustering algorithm. In the case of weak
emissions in an investigated clump (performed manually by
the operator), an expressed emission feature must be strong
enough to be visually perceived when looking at a spectrum.
To broaden the range of detectability to include spectra with
marginal levels of emission as well, a more sophisticated and
partially supervised procedure must be employed.

To expand the search, our methodology uses additional
prior knowledge about the expected wavelength locations
of interesting emission spectral lines. The prior wavelengths
are used to narrow down the interesting wavelength regions
during the comparison between the spectrum of a possibly
peculiar star and an expected (reference) spectrum of a star
with similar physical parameters and composition.

MNRAS 000, 1–14 (2020)
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Figure 3. Showing a diversity of spectra that must be processed by our reference spectrum generation scheme. Panels show spectra of

the following normal and peculiar stars: cool, hot fast-rotating, spectroscopic binary, and Hα/Hβ emission star. All examples show that
the autoencoder network did reproduce the observed shapes of the normal spectra (first two) and not the peculiar spectra (last two) as

desired from the reference spectrum generator. The original spectra are shown in black and reconstructed in blue.

3.1 Spectral modelling using autoencoders

A reference or a synthetic spectrum of a normal, non-
emissive star, can be produced by a multitude of physically-
based computational stellar models (Kurucz 1993; Munari
et al. 2005; de Laverny 2012) or supervised generative data-
driven approaches (Ness et al. 2015; Ting et al. 2019), whose
common weakness is the need for prior knowledge of at least
an approximate stellar parameters of an analysed stars used
by the data-driven algorithm.

As some of our spectra do not have determined stel-
lar parameters or they are flagged with warning signs that
indicate different reduction and analysis problems (missing
infrared arm, various reduction issues, bad astrometric solu-
tions, SME did not converge etc.), we focused on an unsu-
pervised spectral modelling to produce our set of reference
spectra. Given the large size of available training data set,
we chose to use an autoencoder type of an artificial neural
network (ANN) that is rarely used to analyse astronomical
data. Its current use ranges from data denoising (Qin et al.
2017; Shen et al. 2019; Li et al. 2019) to unsupervised fea-
ture extraction and feature based classification (Yang & Li
2015; Li et al. 2017; Pan & Li 2017; Karmakar et al. 2018;
Cheng et al. 2019; Ma et al. 2019; Ralph et al. 2019).

An autoencoder is a special kind of ANN, shaped like
an hourglass, that takes input data (a stellar spectrum in
our case), reduces it to a selected number of latent features
(a procedure known as encoding) and tries to recover the
original data from the extracted latent features (decoding
process). Our dense, fully connected autoencoder consists of
the data input layer, four encoding layers, a middle feature
layer, four decoding layers and the output layer. The num-
ber of nodes (or latent spectral features) in the encoding
part slowly decreases in the following arbitrary selected or-
der: 75%, 50%, 25%, and 10% of input spectral wavelength
samples (4500 in the case of the red spectral arm). The exact
numbers of nodes at each layer are shown in Figure 1. At the
middle feature layer, the autoencoder structure reduces to
only 5 relevant extracted features. Selecting a higher num-

ber of extracted features would also mean that the ANN
structure could extract more uncommon spectral peculiari-
ties which is not what we want. In our case, the goal is the
reconstruction of a normal non-peculiar spectrum by extrac-
tion of a few relevant spectral features. Additionally, because
of the low number of extracted features, our decoded out-
put spectrum is a smoothed and denoised version of an input
spectrum.

A visual representation of the described architecture is
shown in Figure 1. The shape of the decoding structure of
the autoencoder is the same, except in a reverse order. The
Parametric Rectified Linear Unit (PReLU, He et al. 2015)
activation function defined as

f (x) =



x, ifx > 0
ax, ifx 6 0

(1)

is used for all nodes of the network, with the exception of the
final output layer that uses a linear (i.e. identity) activation
function. The x denotes one spectrum flux value in the first
layer and one latent feature in the remaining layers. The free
parameter a in Equation 1 is optimised during the training
phase.

If the network learns a physics-based generative model
of a stellar spectrum, information contained in the extracted
features should be related to real physical parameters, such
as Teff , log g, [Fe/H], and v sin i, or their mathematical com-
binations.

To train our autoencoder, we created a set of presum-
ably normal spectra (with no emission features), resampled
to a common wavelength grid (δλ equal to 0.04 and 0.06 Å
for the blue and red arm) whose coverage is slightly wider
than the range of an individual HERMES arm to account for
variations in wavelength span because of radial velocity. Ob-
servations that did not completely fill the selected range were
padded with continuum value of 1. To be classified as nor-
mal, spectra must suffice the following selection rules: signal
to noise ratio (SNR) in the green arm must be greater than
30, a spectrum must not contain any known reduction issues

MNRAS 000, 1–14 (2020)
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Figure 4. Correlation between extracted latent features and physical parameters. Scatter plots between different features are colored
by the GALAH physical parameters of original spectra. Points in the lower triangle are colored by their Teff and in upper triangle by

their log g. Associated colour mappings are given below the figure (for the lower triangle) and on its right side (for the upper triangle).

Presented are results for the red arm autoencoder.

(red_flag = 0 in Kos et al. 2017) and have valid spectral
parameters (flag_sp < 16 in Buder et al. in preparation ).
Although choosing flag_sp = 0 returns the spectra with the
most trustworthy parameters, we choose to use this higher
cutoff in flag_sp to filter out only the strangest spectra and
not to produce a set of spectra with well defined parameters.
Spectra with 0 < flag_sp < 16 include objects with bad as-
trometric solution, unreliable broadening, and low SNR that
are still useful for our training process. From Traven et al.
(2017); Buder et al. (2018) and Čotar et al. (2019), we know
that some GALAH spectra display peculiar chemical com-
position or consist of multiple stellar components, therefore
we removed all identified classes with the exception of stars
classified as hot or cold that are actually treated as normal
spectra in our case. Even such a rigorous filtering approach
can miss some strange spectra.

After we applied these quality cuts, we were left with
482, 900 spectra, of which last 10% were used as an indepen-
dent validation set during the training process. Before the
training, normalised spectra were inverted (1 − normalised
flux), which sets the continuum level to a value of 0. The
inversion improved the model stability and decreased the
required number of training epochs.

The described autoencoder was trained with the Adam
optimisation algorithm (Kingma & Ba 2014) for 350 epochs.
At every epoch all training spectra were divided into multi-
ple batches of 40, 000 spectra, whose content is randomised
at every epoch. A batch is a subset of data that is indepen-
dently used during a training process. Such splitting and
randomisation of training spectra into batches decreases the
probability of model over-fitting. To enable the selection of

MNRAS 000, 1–14 (2020)
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the best network model, it was saved after the end of every
training epoch.

The loss score minimised by the Adam optimiser, shown
in Figure 2, was computed as a mean absolute error (MAE)
between the input observed and decoded spectra defined as:

lossMAE =
1

Nnλ

N∑
n=1

nλ∑
i=1

��� fae,n,i − fobs,n,i
��� , (2)

where N represent the number of all spectra, nλ the number
of wavelength bins in each spectrum, fae,n,i the flux value
of a decoded spectrum at one of the training epochs, and
fobs,n,i the flux value of a normalised observed spectrum.
Such a loss function gives lower weight to gross outliers in
comparison to the mean squared error (MSE). At the same
time, outputs are closer to a median spectrum of spectra
with a similar appearance and less affected by remaining
peculiar spectra in the training set.

After examining the decoded outputs at different epochs
in comparison with known normal and peculiar spectra, we
decided to use the model produced after 150 training epochs.
After that, overall improvements of the model are minor,
which increases the model opportunity to over-fit on a low
number of peculiar spectra. After closer inspection of the
last epoch, we found indications of over-fitting on known
emission stars, which further confirms the validity of choos-
ing less longer trained model (with greater prediction loss)
and rejects the need for a longer model training.

To decrease the complexity of a dense neural network
and reduce the required training time, two independent au-
toencoders were trained, separately for the blue and red
HERMES spectral arms.

After the training and model selection were completed,
all available 669, 845 spectra were run through the same au-
toencoder to produce their high SNR reference spectra. An
example of four such spectra is shown in Figure 3.

3.2 Latent features

To test the idea of extracted scalar latent features being
connected to physical parameters, and to inspect how an au-
toencoder structure actually orders spectra, we colour coded
values of latent features by unflagged physical parameters
of input the GALAH spectra. Latent feature scatter plots,
colour coded by a different combination of stellar parame-
ters, are presented in Figures 4 (with Teff and log g for the
red arm) as well as B2 (with Teff and log g for the blue arm)
and B3 (with Teff and [Fe/H] for the blue arm).

As expected, all plots show colour gradients induced
by the changing value of investigated physical parameter.
This gives us a confirmation that the derived stellar phys-
ical parameters are spectroscopically meaningful and have
the strongest influence on the appearance of acquired spec-
tra. Rough physical parameters of previously unanalysed or
peculiar spectra can therefore be acquired by averaging the
parameter values of their neighborhood in the latent space.
Similar procedures for parameter estimation have already
been successfully explored by Yang & Li (2015); Pan & Li
(2017); Li et al. (2017).
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Figure 5. Panels show two different wavelength regions of fdiff
for the same star. The top panel is focused on the Hα and [NII]

nebular lines, while the second panel focuses on [SII] lines. Rest

wavelengths of both nebular doublets are given by the green
dash-dotted vertical lines. Their fitted locations, affected by a

gas cloud movement, are given by the red dashed vertical lines.

The EW(Hα) integration range is bounded by the central black
dashed vertical lines on the top panel.

3.3 Hα and Hβ emission characterization

The detection of emission components in spectra is based on
a spectral difference fdiff , computed as:

fdiff = fobs − fref, (3)

where fobs and fref are the observed spectrum and the gen-
erated reference spectrum respectively. The result of a com-
puted difference fdiff for an emission spectrum is shown in
the top panel of Figure 5. Ideally, this computation would
enhance only mismatch between both spectra, with inclu-
sion of spectral noise, if both represent a star with the same
stellar physical parameters. During the initial processing, we
found out that some observed spectra have slight normali-
sation problems, therefore we re-normalised them prior to
difference computation. As the targeted reference spectrum
fref is known and has a continuum level close to a median
value of similar stars in the training set, we first compute a
spectral ratio fdiv, defined as:

fdiv =
fobs
fref

. (4)

The resulting ratio can be viewed as a proxy for a renormal-
isation curve that would bring fobs to the same continuum
level as fref , but would at the same time cancel out any
spectral differences between them. To avoid the later, we
fited fdiv with a 3rd degree polynomial with a symmetrical

MNRAS 000, 1–14 (2020)
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Figure 6. Correlation between equivalent widths of the Hα and

Hβ emission components for our set of detected stars (defined as
having Ha_EW > 0.25 Å) as black points. The remaining set of

objects is shown with gray dots. All flagged objects and possi-

ble spectroscopic binaries are taken out for this plot. The green
dashed linear line represent the one-to-one relation and the orange

dash-dotted line identicates cases where the equivalent width of

the Hβ is half of the Hα line.

2-sigma clipping, run for five iterations. We used the poly-
nomial fit to renormalise fobs.

To get the first identification of an emission features,
we calculate the equivalent width (EW) of the spectral dif-
ference in a ±3.5 Å range around the investigated Balmer
Hα and Hβ lines. The selected range (shown in Figure 5)
is wide enough to encompass emission profile of all spectra,
with the exception of a few ones, which have very broad and
structured profiles. We kept the width narrow to reduce the
effect of spectral noise and nearby sky emission lines (see
Section 3.5). The correlation between measurements of both
equivalent widths is shown in Figure 6 from which it is ev-
ident that the Hβ emission feature is not as strong as the
Hα feature, but comparable to it.

Alongside the equivalent widths of the residual compo-
nents (EW(Hα) and EW(Hβ)), we also measured two addi-
tional properties of these lines, which give some insight into
physical understanding of emission source. The broadening
velocity of a line is described by its width at the 10% of the
line peak (W10%(Hα) and W10%(Hβ)) expressed in km s−1.
The automatic measurement procedure first finds the high-
est point inside the integration wavelength range and then
slides down on both sides of the peak until its strength drops
below 10% of the peak flux value. The broadening velocity
is defined as a width between those two limiting cuts. As the
computation is done for every object in an unsupervised way,
the results are meaningful only for the spectra with evident
emission lines. In the case when a low broadening velocity
is estimated (equivalent to a very narrow peak), the highest
peak could be a residual sky emission line or a cosmic ray
streak. By combining EW(Hα) and W10%(Hα), mass ac-
cretion could be estimated if emission is of a chromospheric
origin.

The second index measured in the fdiff spectrum, that

Figure 7. Asymmetry index of objects with prominent emis-
sion lines in the integration range around investigated Hydrogen

Balmer lines. Objects with index inside the green dashed circle

are considered to have a symmetric emission contribution, which
can be attributed to a chromospheric activity. Central circular

region has a radius of asymmetric index 0.25.

roughly describes the shape and location of an emission fea-
ture, is the asymmetry index defined as:

Asymmetry =
|EWred | − |EWblue |

|EWred | + |EWblue |
, (5)

where |EWx | represents the equivalent width of the absolute
difference | fdiff | on the red and blue side of the central wave-
length of the investigated Balmer line. By this definition, a
line that is, as a whole, moved to the redward side would
have this index equal to 1, whilst if it was moved to the
blueward side, the index would instead equal −1. The distri-
bution of the asymmetry index values for the most promi-
nent and unflagged (see Section 3.8) emitters is shown in
Figure 7, where a strong correlation between the asymme-
try of Hα and Hβ lines is evident. As the Hβ line in most
cases produces a much weaker or even no emission feature,
its asymmetry is much harder to measure. That is evident
in Figure 7 where its index is scattered a around 0, except
for the most asymmetric cases. The distribution of the Hα
asymmetry is much more uniform outside the central sym-
metric region. From this index, we can roughly classify the
source of the emitting component as a chromospheric origin
would produce a centered component with an asymmetry
index close to 0. Everything outside the central region in
Figure 7, defined by the circle with a radius of 0.25, could
be thought to be of an extra-stellar origin as lines are not
perfectly aligned. The used thresholding radius value of 0.25
was defined by observing Figure 7 to encircle the main over-
density of almost symmetric emission profiles.

MNRAS 000, 1–14 (2020)
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Figure 8. Correlation between the strengths of the nebular con-

tributions from both elements. Shown are only cases with a small
difference in the determined radial velocities as shown in Figure

9.

3.4 Detection of nebular contributions

Due to the multiple possible origins of H emission lines
(Kogure & Leung 2007), we also attempted to detect the
extra-stellar nebular contributions of nearby rarefied gas. Its
presence is expressed as forbidden emission lines in addition
to the H emission. The spectral coverage of the HERMES
red arm enables us to observe doublets of [SII] (6548.03 and
6583.41 Å), and [NII] (6716.47 and 6730.85 Å). Having usu-
ally a weak emission contribution that could possibly be
blended with nearby absorption lines, they are most easily
detected when we remove the expected reference spectrum
from the observed one (resulting in fdiff). To automatically
detect the emission strength and position of both doublets,
we independently fitted two Gaussian functions with the
same radial velocity shift for each element to fdiff . Because
the contributing medium is not necessarily physically related
to the observed object, its radial velocity could be different,
therefore it was treated as a free parameter in our fit. Two
independent velocities, one for each of the two doublets, give
us an indication of a spurious or unreliable fit component if
their difference is large. To filter out outliers, we adopted a
threshold of 15 km s−1 on their velocity difference. Some of
the discarded outliers might be correct detections because
few of the spectra show two or more peaks for each nebular
line which might point to a contribution of multiple clouds
with different radial velocities. Such cases are not fully ac-
counted for by the fitting algorithm that only identifies the
strongest emission.

In the absence of additional fitting constraints, the rou-
tine might also find two noise peaks and lock onto them.
Therefore, we put an arbitrarily selected detection threshold
(0.05 of relative flux) on a minimum amplitude of the fitted
forbidden lines to be counted as detected. The result from
this fitting and analysis procedure is a number of success-
fully detected peaks per element and their combined equiva-
lent widths (EW([NII]) and EW([SII])), reported in the final
published table (see Table A1). To filter out some possible

Figure 9. Correlation between radial velocity of both assessed

nebular contributions that are observable in the red arm of
the HERMES spectrum. Shown are only cases with at least

three detected forbidden lines. The grey dots were further dis-

carded as their absolute difference between velocities is more than
15 km s−1. The limiting thresholds are visualized by dashed linear

lines. Plotted velocities are measured in the stellar rest frame and

therefore grouped towards zero velocity, meaning they are moving
together with the star.

miss-detection, we count a spectrum as having nebular lines
when at least three nebular lines above the threshold were
detected. The correlations for measured radial velocities and
equivalent widths of identified objects with nebular emission
are given in Figure 8 and 9 respectively.

The radial velocities of both doublets shown in Figure
9 give us a first impression that the gas dynamics of the
elements in all observed clouds is nearly coincident, but ele-
ments are moving at slightly different velocities. This veloc-
ity offset, but in the opposite direction, was also observed by
Damiani et al. (2016, 2017) who attributed it to the uncer-
tainties in their adopted line wavelengths, that are slightly
different to ours (less than 0.05 Å), causing the velocity
points to be located either above or under the identity line
in Figure 9. Additionally, the plot reveals that the majority
of the gas clouds have a different radial velocity than stars
behind or inside a cloud.

As we are working with fully reduced normalised spec-
tra, with inclusion of sky background removal, the detection
procedure would, in the case of an ideal background removal,
not detect emission due to nebular clouds. As the measured
flux of the nebular contribution is very unlikely the same
for object and because of the physical separation of the sky
fibres (see next Section 3.5 and Kos et al. (2017)), the ideal
cases are very rare. Similarly, the densities and the tem-
peratures of such nebular clouds, extracted from corrected
spectra could be influenced by the extraction pipeline and
were therefore not performed in our case.

The strength of the identified lines, measured by their
equivalent widths, is shown in Figure 8. This shows high a
degree of correlation, where on average [SII] lines have lower
strength than [NII] lines.
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Figure 10. Sky emission lines are most evident after spectra

subtraction in fdiff . Green vertical dashed lines represent expected
locations of emission lines in the rest frame of an observed star.

The middle sky line in this plot falls inside the actual Hα emission

feature and changes its shape from single- to double-peaked and
consequently modifies the measured equivalent width. Upper and

lower thresholds for detection are given by the bold horizontal

dashed lines. The number of detected under- and over-corrected
sky lines in this order is given above the plot.

3.5 Identification of sky emission lines

Attributing a limited and relatively low number of the HER-
MES fibres to monitor the sky in hopefully star and galaxy
free regions, imposes limitations to a quality of the sky back-
ground removal in the GALAH reduction pipeline (Kos et al.
2017). As the sky spectrum is sampled at 25 distinct loca-
tions over the whole 2◦ diameter field, it must be interpo-
lated for all other fibre locations that are pointing towards
stellar sources. Depending on the temporal and spatial vari-
ability of weather conditions, and possible nebular contribu-
tions, interpolation may produce an incorrect sky spectrum
that is thereafter removed from the observed stellar spectra.

In most cases, this does not influence the spectral anal-
ysis, unless one of the strongest sky emission lines falls in
a range of the analysed stellar line. For us, the most prob-
lematic sky emission line, which can alter the shape of the
Hα profile, is located at 6562.7598 Å (our list of sky emis-
sion lines was taken from Hanuschik 2003). As it can get
blended with a real emission feature of the Hα or simulate
its presence, we try to estimate the impact of the sky resid-
ual in the spectrum from multiple nearby emission lines.
First, we select only the strongest sky emitters (with param-
eter Flux > 0.9 in Hanuschik 2003) and shift their reference
wavelength into a stellar rest frame. After that, we use a sim-
ple thresholding (see Figure 10) to estimate their number.
By the thresholding procedure, we want to simultaneously
catch over- and under-corrected stellar spectra.

When a sufficient number (> 4) of strong residual sky
lines with a normalised flux above 10% is detected, a qual-
ity flag (see Section 3.8) is raised, warning a user that the
equivalent width of the Hα emission could be affected by
uncorrected sky emission. As this potential contamination
is present only in the red HERMES arm, we do not check
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Figure 11. Detection of a spectroscopic binary candidate by
cross-correlating observed spectrum with its reference spectrum.

Three Gaussian functions that are fitted to the resulting CCF

(black solid curve) are depicted by their means (dashed vertical
lines) and their best fitting sum in red. Presented are CCFs for

the red arm in the top panel and for the blue arm in the bottom

panel. Number of detected peaks for both arms is given above the
figure.

for spurious strong emitters in the region around the Hβ

line.

3.6 Determination of spectral binarity

During the inspection of our initial results, we noticed that
the spectra of spectroscopically resolved binary stars (SB2)
produce a mismatch between observed and reference spectra
whose fdiff have a profile similar to the P Cygni or inverted P
Cygni profile (Castor & Lamers 1979) that is often observed
in emission-line objects. To detect SB2 candidates, we per-
formed cross-correlation between the reference and the ob-
served spectra, disregarding the wavelength range of ±10Å
around the centre of the Balmer lines to avoid broadening of
the cross-correlation function (CCF) peak. Cross-correlation
was performed independently for both (the blue and red)
HERMES spectral arms. The resulting CCF, shown as the
black curve in Figure 11, was fitted by three Gaussian func-
tions, centred at three strongest peaks, to describe its shape.
The location, amplitude and width of those peaks were as-
sessed to determine the number of stellar components in the
spectrum. When fitting three peaks, there is a possibility of
finding triple stars and distinguishing them from binaries.
Every spectral arm with more than one prominent peak was
marked as potential SB2 detection in the final results (see
Table A1), where binarity indication is given independently
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Table 1. Quality binary flags produced during different steps
of our detection and analysis pipeline. Lower value of the flag

represents lower significance to the quality of detection and clas-

sification. The final reported flag value in Table A1 is a sum of
all raised binary quality flags.

Flag Description

128 Reference spectrum for the Hα range does not exist.

64 Reference spectrum for the Hβ range does not exist.
32 Large difference between reference and observed

spectrum in the red arm of a spectrum. Median

squared error (MSE) between them was > 0.002
16 Large difference between reference and observed

spectrum in the blue arm of a spectrum.

MSE was > 0.008.
8 The spectrum most likely contains duplicated

spectral absorption lines of a resolved SB2 binary
Binarity was detected in both arms.

4 Possible strong contamination by sky emission

features. 4 or more residual sky lines were detected.
Could be a result of under- or over-correction.

2 Wavelength solution (or determined radial velocity)

might be wrong in the red arm of the spectrum.
Determined from cross-correlation peak between

observed and reference spectra.

1 Wavelength solution (or determined radial velocity)
might be wrong in the blue arm of the spectrum.

for both arms. Nevertheless, the results of the blue arm (col-
umn SB2_c1) are more trustworthy because of the higher
number of absorption lines in the red arm (column SB2_c3).
For even greater completeness of detected SB2 candidates, a
list of analyzed binaries, compiled by Traven et al. (2020) can
be used. They combined unsupervised spectral dimension-
ality reduction algorithm t-SNE and semi-supervised CCF
analysis (Merle et al. 2017) to compile their list of SB2 bina-
ries. After their analysis, they discarded spectra that were
falsely identified as SB2 by their detection procedures.

An unexpected result of this binarity search was the re-
alization that some reduced spectra show duplicated lines
only in the red arm or even stranger, only in a smaller sub-
section of it. After a thorough investigation, we uncovered
that this effect is caused by improper treatment of fibre
cross-talk while extracting spectra from the original 2D im-
age (Kos et al. 2017). A partial culprit of this is also a poorer
focus in the red arm. Therefore if only flag SB2_c3 is set, and
not SB2_c1, this can be used as an indication of the above
reduction effect.

Additionally, the highest peak of our CCF function is
used to determine the correctness of the wavelength calibra-
tion during the reduction of the spectra (Kos et al. 2017).
If the peak is shifted by more than five correlation steps
(equalts to about 13 km s−1) from the rest wavelength of
the reference spectrum, the quality flag (see Section 3.8)
is raised, warning the user that the derived radial velocity,
equivalent width, and asymmetry index might be wrong in
the respective arm as both spectra were not aligned ideally.

3.7 Resulting table

The emission indices and other computed parameters are
collected in Table A1. The complete table is available in

electronic form at the CDS. An excerpt of the published
results, containing a subset of 30 rows and 11 most interest-
ing columns for the strongest unflagged emitters is given in
Table B1.

As we do not perform any quality cuts on our results,
a suggested set of limiting parameter thresholds and quality
flags is provided in Section 3.8. Their use depends on user
specific requirements and the analysed science case.

3.8 Flagging, quality control and results selection

The above described pipeline runs blindly on every success-
fully reduced spectrum (guess_flag = 0, for details see Kos
et al. 2017), and could therefore produce wrong or mislead-
ing results for some spectra. To have the ability to filter out
such possible occurrences, we created a set of warning flags
for different pipeline steps that are listed and described in
detail in Table 1. An interested user can base their selec-
tion of results according to the desired confidence level and
a physical question of interest. The cleanest set of 10, 364
Hα emission stars can be produced by selecting unflagged
stars that do not show any signs of possible binarity, defined
such that parameter emiss in the published Table A1 is set
to one (the equivalent of true). To be included among the
cleanest set of detections, we considered only spectra whose
Ha_EW > 0.25 Å. Below this limit, we are less confident in
marking an object as having an emission feature because vi-
sual inspection showed that this strength could be mimicked
by spectral noise, the uncertainty of the reference spectrum,
or induced by the reduction pipeline. This selection criteria
at the same time discards the weakest chromospheric compo-
nents, which might be of great interest for specific studies. If
the user is interested only in stronger emitters, the threshold
should be raised to Ha_EW > 0.5 Å or above.

The published Table A1 also contains a flag that de-
scribes whether the spectrum is considered to contain an
additional nebular contribution. Such spectra can be filtered
out by choosing the parameter nebular to be equal to 1. To
compile this less restrictive list of 4004 spectra, we selected
entries with at least three prominent forbidden emission lines
(NII + SII > 3) and a small difference in their measured ra-
dial velocities (|rv_NII − rv_SII| 6 15 km s−1).

4 TEMPORAL VARIABILITY

The strategy of the GALAH survey is to observe as many
objects as possible, and as a result, not many repeated ob-
servations were made. The repeated fields were mostly ob-
served to assess the stability of the instrument. Time spans
between observations are therefor on the orders of days or
years. This limits the possibility of finding a variable object
greatly, but still enables us to discover potential interesting
objects and diagnose analysis issues.

To find possible emission stars with repeated obser-
vations, we selected stars with repeats, among which at
least one spectrum was identified to harbour a stronger
(Ha_EW > 0.5 Å) unflagged emission feature. This selection
produced 621 stars, having between 2 and 9 observations.
To be confident about the observed variability, we visually
inspected the observed and the reference spectra of 208 stars
with at least three observations. A subset of these spectra
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Figure 12. A sample of objects with repeated observations, where at least one of the normalised spectra (top row) contains strong Hα

emission detected by comparison towards reference spectrum (bottom row). The first two objects (or columns) show shifting location
of an additional emission component peak, and the last two varying degree of its strength. The last example is most likely a result of

a miss-reduction as not only Hα, but also other absorption lines show reduced strength. The existence of this problem is confirmed by
other objects in the same field as majority of them show the same tendency of having weaker absorption lines across the spectrum.

are shown in Figure 12, where we present typical types of
variability discovered by visual inspection. The types can
roughly be described as shape transformation (e.g. change
from single- to double-peak or P Cygni emission profile),
peak location shift, intensity change, and possible reduction
issue.

In the sample of 208 stars, whose spectra were visually
inspected, we found that ∼ 20% of the inspected spectra dis-
play a stable Hα profile. Noticeable profile shape transforma-
tion was observed in ∼ 10% of the cases, and peak location
change in ∼ 5% of the cases. Some degree of emission in-
tensity change was noticed for ∼ 40% of the cases. Visually
similar is reduction induced variability (see the rightmost
panel in Figure 12), observed for ∼ 25% of all inspected re-
peated observations. In the case of multiple observations of
the same star, we can distinguish between the last two profile
changes (intrinsic and reduction induced intensity change)
by looking at the whole spectrum to inspect whether vari-
ability is also exhibited in other absorption lines as shown
by the last example in Figure 12. That kind of reduction
induced variability is limited to a few observed fields.

5 DISCUSSION AND CONCLUSIONS

In this paper, we describe the development and application
of a neural network autoencoder structure that is able to
extract the most relevant latent features from the spectrum.
Low feature dimensionality contains only the most basic
spectral informations that are used to reconstruct a non-

peculiar spectrum with the same physical parameters as the
input spectrum.

Our method of differential spectroscopy is one of the
most widely used approaches to find peculiar spectral fea-
tures that are not found in normal stars. As a part of this
paper, we showed that a dense autoencoder neural network
structure can be reliably used for generation of non-peculiar
reference spectra if trained on a large set of normal spectra.
With the additional exclusion of our detected emission-line
stars, the training set could iteratively be further cleaned
of peculiar stars before training the network. As all the in-
formation about the spectral look is contained in the real
flux values, there is no need to add additional convolutional
layers for the extraction of more complex spectral shapes.

By identifying significant residuals after subtracting the
generated reference spectra from the observed spectra, we
detected emission star candidates in the GALAH fields all
over the sky. Figure 13 shows that we can identify few lo-
cations with a higher density of detected emission-line ob-
jects. The position of emission-line objects coincides with
regions of young stars such as the Orion complex, Blanco
1, Pleiades, and other possibly random over-densities of in-
terstellar gas and dust. Detected nebular emission in stellar
spectra, shown in Figure B4, coincide with large visually-
identified nebular clouds (by comparing detected locations
with the red all-sky photographic composite of The Second
Digitized Sky Survey, described by McLean et al. 2000) such
as the Antares Emission nebulae, clouds around π Sco and
δ Sco, Barnard’s loop, Carina Nebula, nebulae around λ

Ori, nebular veils in the constellations of Puppis, Pyxis and
Antlia, and other less prominent features.
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Figure 13. Spatial distribution of stars with detected emission Balmer emission profiles. Grey areas represent regions that were observed
and analysed in this paper. The green lines represent location of equal reddening in steps of 0.1 magnitude at the distance of 2 kpc.

Reddening data were taken from results published by Capitanio et al. (2017). For readability, no isoline is shown above the reddening

of 1 magnitude. Constellation boundaries were taken from Davenhall & Leggett (1989). Locations of their designations are defined by
median values of constellation polygon vertices.

By combining our detections with additional auxiliary
data sets, we can start exploring more detailed physical ex-
planations of the observed emissions and their structure.
Among them are two specific photometric surveys, VPHAS
(Drew et al. 2014) and IPHAS (Witham et al. 2008) which
were designed to detect and study emission-line sources close
to the Galactic plane. Because of their positional selection
function, their combined photometric data are available only
for 4431 GALAH spectra. Of these, the spectroscopically
confirmed emission stars are shown in Figure 14, whose
color-color diagram can be used to infer accreting objects.

Our detected emission spectra have a broad range of
emission components - these range from very strong to
barely detectable chromospheric emission component whose
identification can be mimicked or masked at multiple steps
of the analysis and data preparation. To limit the num-
ber of false-positive classifications due to reduction and
analysis limitations, we focused on stronger components
(Ha_EW > 0.25 Å) whose existence can be confirmed visu-
ally. Because that kind of process would be slow for the
whole sample, we introduced quality flags that can be used
to filter out unwanted or specific cases. Additionally, the sta-
bility of the spectra and emission features was investigated
by repeated observations of the same objects. Among them,
we observed different variability types, of which one could
be attributed to the data reduction pipeline, limiting the
confidence of finding weak emission profiles in the spectra.

To reliably detect even the weakest chromospheric emis-

sions, uncertainty of the used reference spectra must be well
known as well. By showing that the proposed neural net-
work structure can be used as intended, we are looking into
possibilities to improve our methodology using variational
autoencoder. Its advantage lies in the possibility of simul-
taneous determination of a reference spectrum and its un-
certainty which would enable uncertainty estimation of the
measured emission-line indices.
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APPENDIX A: TABLE DESCRIPTION
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every object analysed using the methodology described in
this paper. The complete table of detected objects and its
metadata is available only in electronic form at the CDS and
at publishers website.

APPENDIX B: ADDITIONAL FIGURES

In order to increase the readability and transparency of the
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dices to the main text.

This paper has been typeset from a TEX/LATEX file prepared by
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Table A1. List and description of the fields in the published catalogue of analysed objects.

Column Unit Description

source_id Gaia DR2 star identifier

sobject_id GALAH internal per-spectrum unique id

ra deg Right ascension coordinate from 2MASS
dec deg Declination coordinate from 2MASS

Ha_EW Å Equivalent width of a difference between observed and template spectrum in the range

of ±3.5 Å around the Hα line

Hb_EW Å Same as the Ha_EW, but for the Hβ line

Ha_EW_abs Å Equivalent width of an absolute difference between observed and template spectrum in

the range of ±3.5 Å around the Hα line

Hb_EW_abs Å Same as the Ha_EW_abs, but for the Hβ line

Ha_W10 km s−1 Width (in km s−1) of the Hα emission feature at 10% of its peak flux amplitude
Ha_EW_asym Value of asymmetry index for the Hα line

Hb_EW_asym Value of asymmetry index for the Hβ line
SB2_c3 Was binarity detected in the red arm

SB2_c1 Was binarity detected in the blue arm

NII Number of detected [NII] peaks in the doublet
SII Number of detected [SII] peaks in the doublet

NII_EW Å Equivalent width of a fitted Gaussian profiles to the [NII] emission features

SII_EW Å Same as the NII_EW, but for the [SII] doublet

rv_NII km s−1 Intrinsic radial velocity of the [NII] doublet, corrected for the barycentric and stellar velocity

rv_SII km s−1 Same as rv_NII, but for the [SII] doublet
nebular Is spectrum considered to have an additional nebular component

emiss Is spectrum considered to have an additional Hα emission component

flag Sum of all bitwise flags raised for a spectrum
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Figure B1. Same plots and objects as in Figure 3 but for the blue spectral arm.
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Table B1. Excerpt of 30 strongest unflagged emitters from the published table presented in detail by Table A1. The rest of the table
can be downloaded in electronic form CDS service and publishers’ website.

source id Ha EW Ha EW abs Ha W10 Ha EW asym NII SII NII EW rv NII rv SII flag

3337923100687567872 5.37 5.37 373.63 0.36 1 0 0.05 -30.22 23.54 0

3217769470732793856 5.06 5.06 252.48 0.07 0 1 0.01 -11.32 35.71 0
4660266122976778240 4.51 4.51 199.66 0.15 0 0 0.02 -310.50 -231.18 0

3340892714091577856 4.35 4.35 205.94 -0.06 2 2 0.20 -24.73 -27.14 0

3336365097008009216 4.14 4.14 188.62 -0.08 0 0 0.07 -76.99 -43.80 0
3217804483306125824 4.02 4.02 152.24 -0.03 0 1 0.01 -85.06 28.70 0

3214742618300312064 3.97 3.98 277.85 -0.08 0 0 0.01 -63.06 -32.82 0

6243142063220661248 3.87 3.87 120.97 -0.07 2 1 0.08 7.21 15.98 0
2967553747040825856 3.80 3.80 330.27 0.07 0 1 -0.00 -66.11 -10.92 0

5948023586013872128 3.72 3.72 277.77 0.17 0 0 0.00 -72.55 -127.22 0

5416221633076680704 3.65 3.65 126.59 -0.08 0 0 -0.01 69.68 19.93 0
3222267297922229248 3.64 3.64 265.38 -0.07 0 0 0.04 -60.66 13.30 0

6245775565362814976 3.59 3.59 133.82 -0.08 0 0 -0.07 194.28 59.86 0
3235905365276381696 3.52 3.82 211.08 -0.43 1 0 0.05 -4.52 57.50 0

3236272877038986240 3.47 3.47 141.67 -0.06 0 0 0.06 -50.01 10.89 0

5200035927402217472 3.46 3.46 148.65 -0.03 1 0 0.04 -89.98 15.81 0
5820283738165246976 3.45 3.45 380.58 -0.08 0 0 -0.02 55.83 78.12 0

3222024374573501952 3.37 3.37 224.71 -0.11 0 1 0.00 -0.04 17.76 0

3221019798902558720 3.37 3.37 142.94 -0.07 0 0 0.03 -64.74 48.73 0
6235172592479759360 3.32 3.32 147.53 0.02 0 0 0.01 -2.29 46.61 0

3220688120051681792 3.27 3.27 131.65 -0.11 0 0 -0.01 -11.03 -126.68 0

2920301135326368256 3.17 3.17 204.04 -0.16 1 0 0.07 -102.90 84.00 0
6086395513764172800 3.11 3.11 130.44 -0.16 0 0 0.04 -55.69 27.51 0

6014331906769737728 3.11 3.11 133.08 -0.07 0 1 -0.02 80.91 44.02 0

3221921742035204608 3.09 3.10 114.30 -0.02 0 0 0.02 -46.60 11.19 0
3181196759054802432 3.07 3.07 111.78 -0.05 0 0 -0.02 32.48 20.05 0

6084509542084855808 3.03 3.03 191.97 -0.03 0 0 0.00 25.25 92.65 0
3217773074208416768 3.00 3.30 343.16 -0.76 0 0 -0.01 -128.82 3.13 0

6244153510833938432 3.00 3.00 117.06 -0.08 0 0 0.01 41.17 35.66 0

3220786839876234752 2.99 2.99 152.48 -0.03 1 0 0.02 -79.85 -69.71 0
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Figure B2. Same plots as shown in Figure 4, but for the latent features of the blue HERMES band, coloured by parameter Teff on lower
triangle and by log g on the upper triangle.
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Figure B3. Same plots as shown in Figure 4, but for the latent features of the blue HERMES band, coloured by parameter Teff on lower
triangle and by [Fe/H] on the upper triangle.
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Figure B4. Same as Figure B4 but showing stars with at least three detected nebula emission lines, shown with black dots.
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